Distributed DNN Training

Menglei Chen, Yu Hua, Rong Bai, Jianming Huang
Huazhong University of Science and Technology, China

i Deep Neural Network (DNN)

Deep Neural Network

i Deep Neural Network (DNN)

|
|
|
|
| Image Customized Chat Weather
| Processing Recommendation Generation Forecast

. I I I I IS IS D D DS DS DS S D S DS D D D DS DS DS D D DS DS DS DS DS DS DS Ba Baa e Eam mm e

‘ Deep Neural Network ‘

i Deep Neural Network (DNN)

|
|
|
|
| Image Customized Chat Weather
| Processing Recommendation Generation Forecast

. I I I I IS IS D D DS DS DS S D S DS D D D DS DS DS D D DS DS DS DS DS DS DS Ba Baa e Eam mm e

‘ Deep Neural Network ‘

i Deep Neural Network (DNN)

Image Customized Chat Weather
Processing Recommendation Generation Forecast

gEEINEN IIE =InE . - -

i DNN Training

e ——— —

i DNN Training

Image

vm

—— o Em oy,

AN

N\
Texts
>

"4

e ——— —

i DNN Training

Forward Propagation

Image

vm

—— o Em oy,

AN

N\
Texts
>

i DNN Training

Forward Propagation

Image

Output

vm

—— o Em oy,

AN

N\
Texts
>

i DNN Training

Forward Propagation

O .’
FUNELES ouesy, 2
AN | lCaIcuIate
Texts |
> | Loss |

i DNN Training

Forward Propagation

Output a
)

lCaIcuIate

(<5radient | Loss |

i DNN Training

Forward Propagation

Image

vm

—— o Em oy,

A

N\
Texts
>

Output a
)

lCaIcuIate

(<5radient | Loss |

Backward Propagation

i DNN Training

Forward Propagation

Image

vm

—— o Em oy,

A

Output a
)

lCaIcuIate

(/
N\ /
Texts .
> N Gradient
\ <€ | Loss |
\ W1i¥ W24 W34¥ wa<&

Gl G2~ G3 G4
\ \

e ——— —

B S ————

DNN Update parameters

Backward Propagation

i Distributed DNN Training

i Distributed DNN Training

i Distributed DNN Training

O
|

7

PAsliclory

Grad.

*‘\

—U

Cak;l

Loss

l2rad.

Grad.

—0

Cak;l

Loss

I

i Distributed DNN Training
/ Node 1 \ / Node 2 \

i Distributed DNN Training
/

i Distributed DNN Training

i Distributed DNN Training

Node 1
/ Forward Propagation

TCP/RDMA

Node 3
/ Forward Propagation

/ Node 4

Forward Propagation \

i Distributed DNN Training

Node 1
/ Forward Propagation

\ Backward Propagation

Node 2
\ / Forward Propagation

j \

Backward Propagation

TCP/RDMA

Node 3
/ Forward Propagation _

\ Backward Propagation

Node 4
\ / Forward Propagation |

/ \ Backward Propagation

-

/ Node 1

Forward Propagation

Distributed DNN Training
\

/ Node 2

Forward Propagation

.

Backward Propagation

\ Backward Propagation / k Backward Propagation j
I || ||
TCP/RDMA]
Node 3 ——1 | —~ Node 4 I Ll
/ Forward Propagation) 4 Forward Propagation N

/

Backward Propagation j

\

Backward Propagation

Distributed DNN Training

Node 2
/ Forward Propagation \

\ Backward Propagation

Ring AllIReduce

4

&
y

(Forward Propagation

-

/ Node 1

Forward Propagation

Distributed DNN Training
\

/ Node 2

Forward Propagation

.

Backward Propagation

\ Backward Propagation / k Backward Propagation j
I || ||
TCP/RDMA]
Node 3 ——1 | —~ Node 4 I Ll
/ Forward Propagation) 4 Forward Propagation N

/

Backward Propagation j

i Distributed DNN Training

Node 1
/ Forward Propagation

\

Input Parameters Grad.

\

Node 2
/ Forward Propagation

Input Parameters Grad.

\ Backward Propy j

.

Node 3
/ Forward Propagation \

Input Parameters Grad.

\ Backward Propaw j

Update Parameters J

NOUEC <
(Forward Propagation \

Input Parameters Grad.

Backward Progw j

\ Backward PropW -

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

Training GPT-3

_gm_The importance of Failure Tolerance
» DNN training is time-consuming and expensive

) Thousands of A100 GPUs

Training GPT-3

_gm_The importance of Failure Tolerance
» DNN training is time-consuming and expensive

) Thousands of A100 GPUs

Training GPT-3 ‘ Several months

_gm_The importance of Failure Tolerance
» DNN training is time-consuming and expensive

) Thousands of A100 GPUs

Training GPT-3 ‘ Several months

‘ 5+ Million dollars

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

Training

Progress

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

Begin I >

Training

Progress

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

Begin I >

Training

Progress

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

e.g., infrastructure failure or
software bug

Begin I >

Training
Progress

Failure Occurs!

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

e.g., infrastructure failure or
software bug

Begin I >

Training
Progress

Failure Occurs!

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin I >

Training
Progress

Failure Occurs!

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin I >

Training
Progress

>

< Recovery Time Failure Occurs!

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin | >

Training
Progress

>

< Recovery Time Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin | >

Training
Progress

€ Recovery Time > * Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

Training
Progress

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin | >

Training
Progress

€ Recovery Time > * Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

Begin I >

Training
Progress

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin | >

Training
Progress

€ Recovery Time > * Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance
Begin I >

Training ‘
Progress

< < < <
| Checkpoint |

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

e.g., infrastructure failure or
software bug

Begm l

Training
Progress

< Recovery Time Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

Begin | > Failure Occurs!

Training ‘
Progress

< < < <
| Checkpoint |

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

e.g., infrastructure failure or
software bug

Begm l

Training
Progress

< Recovery Time Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

Begin | > Failure Occurs!

Training ‘
Progress

< < < <
| Checkpoint |

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin | >

Training
Progress

€ Recovery Time > * Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

£~

Begin | > Failure Occurs!
Training ‘
Progress
O L L L

| Checkpoint

i The importance of Failure Tolerance

» DNN training is time-consuming and expensive

/—\ e.g., infrastructure failure or
software bug

Begin | >

Training
Progress

< Recovery Time >~ Failure Occurs!

» Checkpointing is an efficient way to ensure failure tolerance

Begin | > Failure Occurs!
Training ‘
Progress
O L L Te—

| Checkpoint | ----- > Recovery Time

G Checkpointing in Distributed DNN Training

G Gy

G

G Checkpointing in Distributed DNN Training

Gesume Checkpoint Store >

Gesume Checkpoint Store
\

Resume Checkpoint Store Resume Checkpoint Store
N\ : \ : /

i Checkpointing in Distributed DNN Training

Checkpoint

Checkpoint

i The Need of Frequent Checkpointing

i The Need of Frequent Checkpointing

» Failures are common in large-scale GPU clusters

* The mean time between failures is low to a few minutes

i The Need of Frequent Checkpointing

» Failures are common in large-scale GPU clusters

* The mean time between failures is low to a few minutes

» Frequent job switches in the preemptive GPU cluster scheduling

 The interval between two switches may be only a few seconds

i The Need of Frequent Checkpointing

» Failures are common in large-scale GPU clusters

* The mean time between failures is low tola few minutes

» Frequent job switches in the preemptive”GPU cluster scheduling

ay be only|a few seconds

/

Frequent Checkpointing

e The interval between two switches

i The Need of Frequent Checkpointing

» Failures are common in large-scale GPU clusters

* The mean time between failures is low tola few minutes

» Frequent job switches in the preemptive”GPU cluster scheduling

 The interval between two switchesmmay be only|a few seconds

Frequent Checkpointing

v

High Runtime Overhead

i The Need of Frequent Checkpointing

» Failures are common in large-scale GPU clusters

* The mean time between failures is low tola few minutes

» Frequent job switches in the preemptive”GPU cluster scheduling

 The interval between two switchesmmay be only|a few seconds

Frequent Checkpointing

v

f e High Runtime Overhead

i Existing Checkpointing Schemes are Inefficient

1pyTorch@NIPS'19 2SCAR@ICML19 3 DeepFreeze@CCGRID’20 4 CheckFreq@FAST’21

i Existing Checkpointing Schemes are Inefficient

» Synchronous checkpointing!(i!
* |Introduce severe training stall
e Suffer from high runtime overhead

1pyTorch@NIPS'19 2SCAR@ICML19 3 DeepFreeze@CCGRID’20 4 CheckFreq@FAST’21

i Existing Checkpointing Schemes are Inefficient

» Synchronous checkpointing!(i!
* |Introduce severe training stall
e Suffer from high runtime overhead

» Asynchronous checkpointing!2-4!
 Two-phase checkpointing
* Pipeline the checkpointing with computation

1pyTorch@NIPS'19 2SCAR@ICML19 3 DeepFreeze@CCGRID’20 4 CheckFreq@FAST’21

» Synchronous checkpointing!(i!
* |Introduce severe training stall
e Suffer from high runtime overhead

» Asynchronous checkpointing!2-4!
 Two-phase checkpointing
* Pipeline the checkpointing with computation
* Sub-optimal due to monolithic checkpointing process
* Fail to fully pipeline checkpointing with communication

1pyTorch@NIPS'19 2SCAR@ICML19 3 DeepFreeze@CCGRID’20 4 CheckFreq@FAST’21

i Existing Checkpointing Schemes are Inefficient

i Persistent Memory (PM)

» Intel Optane PM
» Samsung Memory-Semantic CXL (Compute Express Link) SSD

i Persistent Memory (PM)

» Intel Optane PM
» Samsung Memory-Semantic CXL (Compute Express Link) SSD

i Persistent Memory (PM)

» Intel Optane PM
» Samsung Memory-Semantic CXL (Compute Express Link) SSD

Byte-addressable Fine-grained Persistence Near-DRAM performance

3 Our Design

i Our Design

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

10

i Our Design

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

» Asynchronous layer-wise checkpointing

* Fine-grained pipelining

e Communication-aware

10

i Our Design

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

» Asynchronous layer-wise checkpointing

* Fine-grained pipelining

e Communication-aware

> Efficient persistent memory management

e Direct access

e Metadata-aware

10

i Our Design

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

» Asynchronous layer-wise checkpointing

* Fine-grained pipelining
* Communication-aware

m) Minimizing training stalls

> Efficient persistent memory management

e Direct access

e Metadata-aware

10

i Our Design

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

» Asynchronous layer-wise checkpointing

* Fine-grained pipelining
* Communication-aware

m) Minimizing training stalls

> Efficient persistent memory management

e Direct access

e Metadata-aware

m) Fully exploiting persistent memory

10

i Checkpointing Strategies

/- GPU Memory \
&
O

_ Y,

/ DRAM \ /— PM \
£

i Checkpointing Strategies

/- GPU Memory
Model State

11

i Checkpointing Strategies

/- GPU Memory
Model State

I
I
I
|
|
|

\ W1 w2 w3 w4

N — — O — — — —

_ DRAM Snapshot

v

11

i Checkpointing Strategies

/- GPU Memory
Model State

I
I
I
|
|
|

\ W1 w2 w3 w4

N — — O — — — —

_ DRAM Snapshot

AN

Checkpoint

11

i Checkpointing Strategies

/- GPU Memory
Model State

I
I
I
|
|
|

\ W1 w2 w3 w4

N — — O — — — —

Checkpoint

_ DRAM Snapshot

11

-

Checkpointing Strategies

/- GPU Memory
Model State

_ DRAM Snapshot

-~

GPU Snapshot

v

Checkpoint

11

i Asynchronous Layer-wise Checkpointing

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

- Execution flow of CheckFreqll! ~N
Training Stream

Checkpointing
k Stream j

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

. Execution flow of CheckFreqll! ~N
Training Stream
B3| B2 | Bl
Checkpointing
\ Stream j

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

(I'raining Stream
B3| B2 | Bl

Checkpointing

Execution flow of CheckFreqll! ~N

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

\ Stream j

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

(I'raining Stream
B3| B2 | Bl

Checkpointing

Execution flow of CheckFreqll! ~N

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

\ Stream j

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

(I'raining Stream
B3| B2 | Bl

Checkpointing

Execution flow of CheckFreqll! ~N

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

\ Stream)

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

-

(I'raining Stream

B3] B2 | B1

Execution flow of CheckFreq!t!

Checkpointing

\ Stream

Asynchronous Layer-wise Checkpointing

F1] F2 F3 | B3] B2 Bl
C3 C2 Cl
CHK

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

-

(I'raining Stream

B3] B2 | B1

Execution flow of CheckFreq!t!

Checkpointing

\ Stream

Asynchronous Layer-wise Checkpointing

F1] F2 F3 | B3] B2 Bl
C3 C2 Cl
CHK

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

(I'raining Stream

B3] B2 | B1

Execution flow of CheckFreq!t!

Checkpointing

\ Stream

1] r2

FL] F2 | F3 | B3] B2 | B1 Stall
3| | HII
CHK

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

Execution flow of CheckFreq!!l
(I'raining Stream 9 \

B3] B2 | B1 F1] F2 F3 | B3] B2 Bl

Checkpointing CHK
\ Stream)
Execution flow of LightCheck
(I'raining Stream \

Checkpointing

CHK

\ Stream j

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

Execution flow of CheckFreq!!l
(I'raining Stream 9 \

B3] B2 | B1 F1] F2 F3 | B3] B2 Bl

Checkpointing CHK
\ Stream)
- Execution flow of LightCheck ~N
Training Stream
B3| B2 | Bl
C3

Checkpointing

CHK

\ Stream j

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

(I'raining Stream

Execution flow of CheckFreq!t!

B3| B2 | B1

Checkpointing

\ Stream

B3 | B2 | B1 Fi] 2 | 3|83 B2 | B1
Stall
3] c2]cu 3] 2| ca HII
Checkpointing CHK
\ Stream)
- Execution flow of LightCheck ~N
Training Stream

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

(I'raining Stream

B3] B2 | B1

Execution flow of CheckFreq!t!

Checkpointing

\ Stream

1] r2

FL] F2 | F3 | B3] B2 | B1 Stall
3| | HII
CHK

(I'raining Stream

B3| B2 | B1

Checkpointing

\ Stream

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

CHK

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

12

i Asynchronous Layer-wise Checkpointing

. Execution flow of CheckFreq!!] ~
Training Stream
B3] B2 | Bl F1 F2 F3 | B3] B2 Bl Stall
C3 C2 C1 U C3 C2 Cl [€&=—>| U
Checkpointing CHK
\ Stream)
- Execution flow of LightCheck ~N
Training Stream
B3] B2 | Bl

c3 Juz c2 Ju c1 Juz

Checkpointing

CHK

\ Stream j

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

i Asynchronous Layer-wise Checkpointing

. Execution flow of CheckFreq!!] ~
Training Stream
B3 | B2 | B1 Fi] r2 | r3]B3] B2 | B2 Stall
3| aa]lal]u 3|]| ale—>u
Checkpointing CHK
\ Stream)
- Execution flow of LightCheck ~N
Training Stream
B3 | B2 | B1 F1] 2 | 3]B3] B2 | B1
c3 Jud c2 Ju c1 Jui c3 Jud c2 |ux c1 Juz

Checkpointing

CHK

\ Stream j

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

i Asynchronous Layer-wise Checkpointing

. Execution flow of CheckFreq!!] ~
Training Stream
B3| B2 | B1 F1| r2 | 3]B3] B2 | B2 Stall
3| c2|cal]lu 3|l ale—u
Checkpointing CHK
\ Stream)
- Execution flow of LightCheck ~N
Training Stream
B3 | B2 | B1 F1| Fr2 | F3|B3] B2 | B2 No Stall
c3 Jud c2 Ju c1 Jui c3 Jud c2 |ux c1 Juz

Checkpointing

CHK

\ Stream j

Backward Propagation

Forward Propagation

Communication

Update Parameters

Checkpointing

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

i Efficient persistent memory management

GPU

L2 Cache

é GPU Memory

Model

Snapshot

— CPU

Core

??

L

13

i Efficient persistent memory management

GPU

L2 Cache

é GPU Memory

Model

Snapshot

— CPU

Core

L

[Checkpoint

??

T

DDR T

I

DRAM | DDR-T |

Snapshot

J

i Efficient persistent memory management

GPU — [CPU R

? ? % n Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
k Model Snapshot I [Checkpoint J [Snapshot J
. /

PCle

i Efficient persistent memory management

GPU

L2 Cache

‘ﬂ

)

PCle

r— CPU

??

Core |

(

GPU I\/Iemory

Model

Snapshot

/

\b&

S

[

DDR-T

N

Checkpoint

|

~

DRAM | DDR-T |

Snapshot

J

)

Unified virtual addressing (UVA)

13

i Efficient persistent memory management

GPU — [CPU R

? ? % n Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
k Model Snapshot I [Checkpoint J [Snapshot J
. /

PCle

i Efficient persistent memory management

GPU — [CPU R

? ? % l Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
Model Snapshot I Checkpoint Snapshot
\k / = ~
-~

PCle

i Efficient persistent memory management

GPU — [CPU R

? ? % l Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
Model Snapshot I Checkpoint Snapshot
\k / = ~
-~

PCle

Data Mapping Region Continuous Tensor Region

i Efficient persistent memory management

GPU — [CPU R

? ? % l Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
Model Snapshot I Checkpoint Snapshot
\k / = ~
-~

PCle

Data Mapping Region Continuous Tensor Region
I > Continuously

i Efficient persistent memory management

GPU — [CPU R

? ? % l Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
Model Snapshot I Checkpoint Snapshot
\k / = ~
-~

[.]

Data Mapping Region Continuous Tensor Region
I > Continuously

PCle

i Efficient persistent memory management

GPU — [CPU R

? ? % l Core ? T
L2 Cache l
GPU Memory] DDR T DRAM | DDR-T |
Model Snapshot I Checkpoint Snapshot
\k / = ~
-~

—
- ~
—— ~y,
-
—
—
—-_—
—

PCle

_ 128-byte aligned T~
______ .- -~ Small metadata) ---Largetensordata T~ _
[] i i]
Data Mapping Region Continuous Tensor Region

I > Continuously

14

i Evaluation

> Platform

* Three nodes connected via 100 Gbps Mellanox InfiniBand switch

> DNN Models
 ResNet-18, VGG-16, Inception-V3, AlexNet, GPT-2, BERT

» Comparisons
 CheckFreq, Pytorch

14

i Evaluation

> Platform

* Three nodes connected via 100 Gbps Mellanox InfiniBand switch

> DNN Models
 ResNet-18, VGG-16, Inception-V3, AlexNet, GPT-2, BERT

» Comparisons
 CheckFreq, Pytorch

Sever Configuration

Machine CPU GPU Memory Storage Network

Intel Xeon Gold | 1 Tesla V100, | 192GB DRAM, 6 X 128GB | 3.6TB | 100Gbps Mellanox

3nodes | 530R 26 cores| 16GB | Intel Optane PM Modules | HDD | InfiniBand Switch

i Checkpointing Frequency

> Limit runtime overhead within 5%

15

i Checkpointing Frequency

> Limit runtime overhead within 5%

Models Checkpoint Number of Iterations
Size (MB) LightCheck-G LightCheck-C LightCheck-D LightCheck-disk CheckFreq torch.save

ResNet-18 90 1 1 1 7 20 102
VGG-16 1,056 6 6 6 64 146 904
Inception-V3 183 14 14 14 30 40 118
AlexNet 467 8 8 8 95 164 1,084
GPT-2 1,508 6 6 6 46 100 682
BERT 4,004 10 10 10 82 200 1,100

i Checkpointing Frequency

> Limit runtime overhead within 5%

Model Checkpoint . = = — = — — — — Nu.mbe.r.of_ltgrations YTy y -
odeis . N\
Size (MB) " LightCheck-G LightCheck-C LightCheck-D \LightCheck-diskj CheckFreq torch.sav%
[|
| |
ResNet-18 90 1 1 1 : 7 20 102 |
|
VGG-16 1,056 : 6 6 6 : 64 | 146 904 :
Inception-V3 183 | 14 14 14 : 30 : 40 118 |
AlexNet 467 8 8 8 ! 95 | 164 1,084 |
GPT-2 1508 | 6 6 6 L4 100 682 |
I
BERT 4,004 ~_ 10 10 10 _/ 82 ‘. 200 1,100 ,
B S — e — —_— o
 parey — -

~-
_ e e aw s s o

LightCheck can achieve frequent checkpointing

with modest runtime overhead Up to 10X

15

i Checkpointing Frequency

> Limit runtime overhead within 5%

Models Checkpoint Number of Iterations
Size (MB) LightCheck-G LightCheck-C LightCheck-D LightCheck-disk CheckFreq torch.save

ResNet-18 90 1 1 1 7 20 102
VGG-16 1,056 6 6 6 64 146 904
Inception-V3 183 14 14 14 30 40 118
AlexNet 467 8 8 8 95 164 1,084
GPT-2 1,508 6 6 6 46 100 682
BERT 4,004 10 10 10 82 200 1,100

i Checkpointing Frequency

> Limit runtime overhead within 5%

Checkpoint Number of Iterations_ _ _ _ _ _ _ _ _ _ _ -
Models Size (MB) LightCheck-G LightCheck-C LightCheck-DII LightCheck-diskjiICheckFreq torch.sav%
L

ResNet-18 90 1 1 1 : 7 I: 20 102 :
VGG-16 1,056 6 6 6 : 64 :. 146 904 :
Inception-V3 183 14 14 14 | 30 :: 40 118 |
AlexNet 467 8 8 8 : 95 1 164 1,084 :
GPT-2 1,508 6 6 6 | 46 | 100 682 |
BERT 4,004 10 10 10 l\ 82 V200 1,100)

-~ - —A

[-

Asynchronous layer-wise checkpointing
reduces the runtime overhead

—_— g

Up to 2X

15

_gm Overall Performance

» With the aboved checkpointing frequency

16

_gm Overall Performance

» With the aboved checkpointing frequency

[]LightCheck-G []LightCheck-C LightCheck-D [LightCheck-disk
[CheckFreq [CheckFreg-same [|torch.save [Jtorch.save-same
8 14.0 57.6 15.9 70.0 8.1 23.0 11.0 66.0 13.4 74.8 14.2 69.0
X
~— 6.4
O Bl-eeeaa N _____ X N S {1 I | | 600 ______ W _______ | _ |l
8 5;.2 4.9 5_~_1
< 44 44 4.5] 44|44
o 4.0 M 40 40 4.2 SN
6 4 —————— 37—~~~ 3.8 1T &~ ~ T TrEw® """ i o, -~~~ 35 i =
3.2 3.2
g 2.8 . 26 5 27
2.02.02.0 2.0 2:12:1
g | 1.0 1.0
N
0 1 1 1 1 1
ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT
15 40 40165165 26 26 18 18 71 71 31 31205205 97 97517517
© 12 12
o)
€ 10 fF-------- ------- -l - O ------ l------- -
= 8787
E\ 7.07.07.07.0
o
>
& 5l-------- y------- - - g ------ - HHH
8 34343434
m i 2525 24242424 2.02.02.02.0
1.01.01.01.0
O 9—.2 .;?0‘2(-)3? 1 | | I_l | 1

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT

_gm Overall Performance

» With the aboved checkpointing frequency

__________ » with the same checkpointing frequency as LightCheck
- /
[_JLightCheck-G _1:.|_igm;;ah§~ﬁk-c‘h LightCheck-D __ ["__] LighfCheck-disk
[CheckFreq [CheckFreg-same ° [|torch.save I [Jtorch.save-same

8 14.0 57.6 1!9_20.0 8. 23. 11.0 66.0 3.4 .8 J 14.2 69.0
e |
~— 6.4
T Gk - _____ 5ol |- -] BN - _______ 600 ________ - ____ | _ Wl
8 5.2 5.1
P B 4;9 = i
= 4.4 4.4 4.5 44|44
o 4.0 M 40 40 4.2 = &=
> 4 —————— 37—~~~ 3.8 1T &~ ~ T TrEw® """ i B o, 1r _————?35 i =
@) 32 32
() i 2 26 2527 T

12, 22

% 2 | 202020 _{5_2.0 110 1TLEE BN __1_621_2 Jiilims-mijine 1nan
S | 1.0 1.0 |
2 il AL H

0 1 1 1 1 1

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT
15 40 40165165 26 26 18 18 71 71 31 31205205 97 97517517
© 12 12
E 1D fmm mnmea] 1| e 1 a1 byt | 1 (mielelubulelel (111 | ittty |11 | Iaiialaite il
i .7 8.
E\ 7.07.07.07.0
)
] B S | 1 14 | 1| S {11111 S e HHIH
(] 34343434
& i 2525 24242424 2.02.02.02.0
H ” |_| H H 1.01.01.01.0 |_|
O 9—-2 -;?0‘2(-)%2 1 1 1 I_l 1 1

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT 16

_gm Overall Performance

» With the aboved checkpointing frequency

__________ » with the same checkpointing frequency as LightCheck
- /
[JLightCheck-G Il Light@hSek-G__ LightCheck-D __ ["] LighfCheck-gisk
8 ~ 1%Che&k!zrﬂ 1A9_Z%I c;_heCI(_ﬁeq%émiT mCh%?:ezol—:Ito@:%_:ﬂe _14A2_69.0_ \

g B I_ p— — _— —_— — p— _— —_— -%;4 [— _— —_— .--60 p— _— —_— L I _— —_— —_— | — ' - - - - s \
] R | B | EREE soff. M- R 111 - % IRERRRES -] v
S 1 . illll aalaa] Incuring high runtime
5 4 -4 ""3__23‘8' Bl M TTHEENE HHHE HH = 2HH .
o T 1 | overhead when performing
= % | 2.02.02.0 [_{5_2.0 il B o il] __1_621_2-1_ | 1 M __F®aisl 1 1. | ul) i
£ ”H H ‘ HH H H H n HH frequent checkpointing

0 1 1 1 1

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT

15 40 40165165 26 26 18 18 71 71 31 31205205 97 97517517
@ 12 12
€ 10F--------Jt-------HUW--------- -0 - B HE------ BHH------- .
a 7.07.07.07.0
o
5 5F--- - 1| 111 | E— 11— 1Y —— - '
(] 34343434
& i 2525 24242424 20202020

0 30‘20‘2(-)4-2” |-| 1 H | H H H | 1-01-01-0];(') | |_| 1

P

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT 1o

_gm Overall Performance

» With the aboved checkpointing frequency

[]LightCheck-G []LightCheck-C LightCheck-D [LightCheck-disk
[CheckFreq [CheckFreg-same [|torch.save [Jtorch.save-same
8 14.0 57.6 15.9 70.0 8.1 23.0 11.0 66.0 13.4 74.8 14.2 69.0
X
~— 6.4
O Bl-eeeaa N _____ X N S {1 I | | 600 ______ W _______ | _ |l
8 5;.2 4.9 5_~_1
< 44 44 4.5] 44|44
o 4.0 M 40 40 4.2 SN
6 4 —————— 37—~~~ 3.8 1T &~ ~ T TrEw® """ i o, -~~~ 35 i =
3.2 3.2
g 2.8 . 26 5 27
2.02.02.0 2.0 2:12:1
g | 1.0 1.0
N
0 1 1 1 1 1
ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT
15 40 40165165 26 26 18 18 71 71 31 31205205 97 97517517
© 12 12
o)
€ 10 fF-------- ------- -l - O ------ l------- -
= 8787
E\ 7.07.07.07.0
o
>
& 5l-------- y------- - - g ------ - HHH
8 34343434
m i 2525 24242424 2.02.02.02.0
1.01.01.01.0
O 9—.2 .;?0‘2(-)3? 1 | | I_l | 1

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT

-

Overall Performance

» With the aboved checkpointing frequency

Runtime Overhead (%)

N
(6}

Recovery Time (s)

»

I

N

(@)

oo

[JLightCheck-G [] LightCheck-C LightCheck-D [LightCheck-disk
[CheckFreq [CheckFreg-same [|torch.save [Jtorch.save-same
14.0 57.6 15.9 70.0 8.1 23.0 11.0 66.0 134 74.8 142 69.0
6.4
_____________ 59 R | N | —] L o s e
[52 | s

< 5% Runtime Overhead

-—--
—y
—
_—

=N

ResNet-18 VGG-16 InceptionV3 AlexNet GPT-2 BERT LightCheck provides lower
40 40165165 26 26 18 18 71 71 31 31205205 97 97517517 recovery time and Overhead
2 1 than existing schemes
_________ 1
I | Y »
7
_ -
® - -
< 7s Recovery Time - - -
ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT 1o

i GPU Utilization

»Record the GPU utilization every 50 ms, VGG-16

17

GPU Utilization

»Record the GPU utilization every 50 ms, VGG-16

—~ 75

X ——LightCheck ~ —— CheckFreq

= B o
9 l A \ | | | |

‘E o0 “"‘v i ’“v\"ﬂt*v"i,’\"‘ j “"\'/MMW" M“ 'M"',Mv‘ i ’NN“‘HW‘\M”'”M
> 25 |- -f Ao A R F- A .
2 - | Stall : | Stall : | Stall

() I' 1 " \‘ l, .
2 0 . = | 1 | i | 1 | 1 | P % P 1 | 1

0 =" 300 600 °7 900 1,200 1,500 1,800 2,100 2,400
Time (50 ms)

Q)
= - ——LightCheck ~ —— CheckFreq -
5 100 o R AR R
‘.(-U‘ - -
N 75 [l fomm oo sl i e i - —
5 ’ il

= 50 oy U R EEREEEEEEEEE —
9 / \ . - ! :

8 25 _;‘__u__!_SIaI_I_________; _____ ILStal ..+ M IStall __________ _
2 - | : ' \ / .
g- 0 ‘\ 1 ’,l' | 1 | “‘I\ ,', | 1 | 1 | 1 ‘\\~ _/I‘I 1 | 1
8 0 -7 300 600 “7 900 1,200 1,500 1,800 2,100 2,400

Time (50 ms)

Computation Utilization (%)

Memory Utilization (%)

GPU Utilization

»Record the GPU utilization every 50 ms, VGG-16

~
(6)]

N O N
o 01 O O

—LightCheck =~ —— CheckFreq
ain MW A W\" i w\mmmmw M, WY N :_ —
— —,l _-— s . - ﬁ - s s s e s e o | fee’ e e e - - - ~ ~
— 2 I T | I T 1 | | f— \
' | Stall | Stall |Sta|| y
L] . L Al LightCheck eliminates
0 300 600 "900 1,200 1500 1,800 2,100 2,400 S :
Time (50 ms) training stall by leveraging
find-grained pipelining
- - - A\
100’ bRt 1L =
It I
(g 1 ; istan] |_ Stall i istal _
\ u R /) | ! Al (R |
0 7 300 600 900 1,200 1,500 1,800 2,100 2,400
Time (50 ms)

17

_gm _Conclusion

» LightCheck: A cost-efficient checkpointing scheme for DNN training
* Asynchronous layer-wise checkpointing

e Efficient persistent memory management

» More evaluation results and analysis are in the paper

» Available at: https://github.com/LighT-chenml/LightCheck.git

18

https://github.com/LighT-chenml/LightCheck.git

_gm _Conclusion

» LightCheck: A cost-efficient checkpointing scheme for DNN training
* Asynchronous layer-wise checkpointing

e Efficient persistent memory management

» More evaluation results and analysis are in the paper

» Available at: https://github.com/LighT-chenml/LightCheck.git

Thank you! Q&A

18

https://github.com/LighT-chenml/LightCheck.git

