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• Introduce severe training stall
• Suffer from high runtime overhead

Ø Asynchronous  checkpointing[2-4]

• Two-phase checkpointing
• Pipeline the checkpointing with computation

1 PyTorch@NIPS’19    2 SCAR@ICML’19    3 DeepFreeze@CCGRID’20    4 CheckFreq@FAST’21    

• Sub-optimal due to monolithic checkpointing process
• Fail to fully pipeline checkpointing with communication
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Our Design

Ø Asynchronous layer-wise checkpointing
• Fine-grained pipelining
• Communication-aware

Ø Efficient persistent memory management
• Direct access
• Metadata-aware

Minimizing training stalls

Fully exploiting persistent memory

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training
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Checkpointing Frequency

Ø Limit runtime overhead within 5%
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Checkpointing Frequency

Ø Limit runtime overhead within 5%

Up to 10XLightCheck can achieve frequent checkpointing 
with modest runtime overhead
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Checkpointing Frequency

Ø Limit runtime overhead within 5%

Up to 2XAsynchronous layer-wise checkpointing 
reduces the runtime overhead
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Overall Performance

Ø With the aboved checkpointing frequency 

< 5% Runtime Overhead

< 7s Recovery Time

LightCheck provides lower 
recovery time and overhead 

than existing schemes
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GPU Utilization
ØRecord the GPU utilization every 50 ms, VGG-16

LightCheck eliminates 
training stall by leveraging 

find-grained pipelining
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Conclusion

Ø LightCheck: A cost-efficient checkpointing scheme for DNN training

• Asynchronous layer-wise checkpointing

• Efficient persistent memory management 

Ø More evaluation results and analysis are in the paper

Ø Available at: https://github.com/LighT-chenml/LightCheck.git
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18

Conclusion

Ø LightCheck: A cost-efficient checkpointing scheme for DNN training

• Asynchronous layer-wise checkpointing

• Efficient persistent memory management 

Ø More evaluation results and analysis are in the paper

Ø Available at: https://github.com/LighT-chenml/LightCheck.git

Thank you! Q&A
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