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» Synchronous checkpointing!(i!
* |Introduce severe training stall
e Suffer from high runtime overhead

» Asynchronous checkpointing!2-4!
 Two-phase checkpointing
* Pipeline the checkpointing with computation
* Sub-optimal due to monolithic checkpointing process
* Fail to fully pipeline checkpointing with communication

1pyTorch@NIPS'19 2SCAR@ICML19 3 DeepFreeze@CCGRID’20 4 CheckFreq@FAST’21

i Existing Checkpointing Schemes are Inefficient
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» Intel Optane PM
» Samsung Memory-Semantic CXL (Compute Express Link) SSD

Byte-addressable Fine-grained Persistence Near-DRAM performance
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LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

» Asynchronous layer-wise checkpointing

* Fine-grained pipelining
* Communication-aware

m) Minimizing training stalls

> Efficient persistent memory management

e Direct access

e Metadata-aware

m) Fully exploiting persistent memory
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> DNN Models
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» Comparisons
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Sever Configuration

Machine CPU GPU Memory Storage Network

Intel Xeon Gold | 1 Tesla V100, | 192GB DRAM, 6 X 128GB | 3.6TB | 100Gbps Mellanox

3nodes | 530R 26 cores|  16GB | Intel Optane PM Modules | HDD | InfiniBand Switch
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Models Checkpoint Number of Iterations
Size (MB) LightCheck-G LightCheck-C LightCheck-D LightCheck-disk CheckFreq torch.save

ResNet-18 90 1 1 1 7 20 102
VGG-16 1,056 6 6 6 64 146 904
Inception-V3 183 14 14 14 30 40 118
AlexNet 467 8 8 8 95 164 1,084
GPT-2 1,508 6 6 6 46 100 682
BERT 4,004 10 10 10 82 200 1,100
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VGG-16 1,056 6 6 6 64 146 904
Inception-V3 183 14 14 14 30 40 118
AlexNet 467 8 8 8 95 164 1,084
GPT-2 1,508 6 6 6 46 100 682
BERT 4,004 10 10 10 82 200 1,100




i Checkpointing Frequency

> Limit runtime overhead within 5%

Checkpoint Number of Iterations_ _ _ _ _ _ _ _ _ _ _ -
Models Size (MB) LightCheck-G LightCheck-C LightCheck-DII LightCheck-diskjiICheckFreq torch.sav%
L

ResNet-18 90 1 1 1 : 7 I: 20 102 :
VGG-16 1,056 6 6 6 : 64 :. 146 904 :
Inception-V3 183 14 14 14 | 30 :: 40 118 |
AlexNet 467 8 8 8 : 95 1 164 1,084 :
GPT-2 1,508 6 6 6 | 46 | 100 682 |
BERT 4,004 10 10 10 l\ 82 V200 1,100 )

-~ - —A

[ -

Asynchronous layer-wise checkpointing
reduces the runtime overhead

—_— g

Up to 2X
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» With the aboved checkpointing frequency
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» With the aboved checkpointing frequency
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» With the aboved checkpointing frequency
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» With the aboved checkpointing frequency
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» With the aboved checkpointing frequency
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Overall Performance

» With the aboved checkpointing frequency

Runtime Overhead (%)
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i GPU Utilization

»Record the GPU utilization every 50 ms, VGG-16
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GPU Utilization

»Record the GPU utilization every 50 ms, VGG-16
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Computation Utilization (%)

Memory Utilization (%)

GPU Utilization

»Record the GPU utilization every 50 ms, VGG-16
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_gm _Conclusion

» LightCheck: A cost-efficient checkpointing scheme for DNN training
* Asynchronous layer-wise checkpointing

e Efficient persistent memory management

» More evaluation results and analysis are in the paper

» Available at: https://github.com/LighT-chenml/LightCheck.git
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