
A Cost-Efficient Failure-Tolerant Scheme for
Distributed DNN Training

Menglei Chen, Yu Hua*, Rong Bai, Jianming Huang
WNLO, Huazhong University of Science and Technology, Wuhan, Hubei, China

*Corresponding author: Yu Hua
E-mail: {chenml, csyhua, bair, jmhuang}@hust.edu.cn

Abstract—Distributed deep neural network (DNN) training
is important to support artificial intelligence (AI) applications,
such as image classification, natural language processing, and
autonomous driving. Unfortunately, the distributed property
makes the DNN training vulnerable to system failures. Check-
pointing is generally used to support failure tolerance, which
however suffers from high runtime overheads. In order to enable
high-performance and low-latency checkpointing, we propose a
lightweight checkpointing system for distributed DNN training,
called LightCheck. To reduce the checkpointing overheads, we
leverage fine-grained asynchronous checkpointing by pipelining
checkpointing in a layer-wise way. To further decrease the
checkpointing latency, we leverage the software-hardware co-
design methodology by coalescing new hardware devices into our
checkpointing system via a persistent memory (PM) manager. Ex-
perimental results on six representative real-world DNN models
demonstrate that LightCheck offers more than 10× higher check-
pointing frequency with lower runtime overheads than state-
of-the-art checkpointing schemes. We have released the open-
source codes for public use in https://github.com/LighT-chenml/
LightCheck.git.

Index Terms—Computer systems, Checkpointing systems, Fail-
ure tolerance, Deep neural networks

I. INTRODUCTION

Deep neural networks (DNNs) have been widely adopted
in many domains, such as image classification [1], natural
language processing [2], and autonomous driving [3]. In
general, DNNs need to be frequently trained to achieve high
accuracy. However, training DNN models is time-consuming
and expensive, even if deploying models across multiple GPUs
to accelerate DNN training (called distributed DNN training).
For example, training a large language model (LLM) GPT-3
consumes up to thousands of NVIDIA A100 GPUs and several
months, which spends more than 5 million dollars [2].

The time-consuming DNN training is vulnerable to system
failures (e.g., infrastructure failure or software bug). When
a failure occurs, the trained model states will be lost, thus
causing significant waste of time and training resources.
Unfortunately, failures are common during the long training
process [4]. Studies from Microsoft [4], [5] show that the mean
time between failures (MTBF) varies from a few minutes to
several days when training DNNs in large-scale GPU clusters.
Hence, the model states (i.e., model parameters and optimizer
states) are regularly written to persistent storage for failure

This work was supported in part by National Natural Science Foundation
of China (NSFC) under Grant No. 62125202, U22B2022 and 61821003.

tolerance, which is termed checkpointing. By using check-
pointing, when a failure occurs, only the training progress
between two checkpoints will be lost, and others are efficiently
saved. Except for failure tolerance, checkpointing is also
critical for other scenarios in DNN training. For example, in
the preemptive GPU cluster scheduling, the scheduler adopts
a round-based scheduling scheme to share resources among
multiple training jobs with optimization objectives, such as
average job completion time (JCT) [6] or GPU resource
utilization [7]. When switching jobs, the current training job
is interrupted and its training states are checkpointed before
loading the states of other training jobs. The interval between
two switches may be only a few seconds. Such frequent
switches in scheduling require fast checkpointing to achieve
high performance.

Unfortunately, in DNN training, since the size of the model
states is often larger than hundreds of megabytes (MB) or even
gigabytes (GB), it is not cost-efficient to frequently checkpoint
such large model states. Hence, existing DNN training frame-
works usually perform checkpointing at the end of each epoch.
However, such epoch-level checkpointing would lose more
training progress after failures or interruptions. To achieve fre-
quent checkpointing with low runtime overhead, prior designs
focus on moving checkpointing out of the critical path in DNN
training. DeepFreeze [8] and Check-N-Run [9] first copy the
model states in memory and then asynchronously save the
data copy into non-volatile storage via the background threads.
However, these two checkpointing strategies need to block
the training when copying the model states, so the overhead
is still high compared with the millisecond-level iteration
time. CheckFreq [10] pipelines the in-memory copy operation
with computation. But CheckFreq focuses on the single-node
DNN training, which fails to fully utilize the parallelism
among computation, communication, and checkpointing in the
distributed DNN training.

In recent years, a new class of storage media called per-
sistent memory (PM), has received extensive attention [11]–
[14]. PM enables byte-addressable access and large capacity
with near-DRAM performance, which has been widely used
in high-performance database [15], file system [16], and dis-
tributed transaction system [17]. PM provides an opportunity
to achieve fast resilience for DNN training. Prior schemes [18],
[19] leverage PM to provide byte-addressable persistence to
GPU kernels, thus improving the performance of GPU appli-

https://github.com/LighT-chenml/LightCheck.git
https://github.com/LighT-chenml/LightCheck.git

cations. However, to fully utilize PM and PCIe (i.e., peripheral
component interconnect express) bandwidth in checkpointing,
the process of writing checkpoints needs to further consider
the features of PM. Specifically, PM bandwidth is sensitive
to the access pattern of running applications [20], [21], and
GPU interacts with PM through the PCIe interface at 128-byte
granularity.

In this work, we present a lightweight checkpointing system
called LightCheck, which provides frequent checkpointing
with low overheads for distributed DNN training. Specifi-
cally, LightCheck pipelines checkpointing with computation
and communication in a layer-wise way, thus mitigating the
impact of checkpointing on training performance. Besides,
LightCheck efficiently coalesces the direct access (DAX) fea-
ture [22] of PM and the unified virtual addressing (UVA) tech-
nique to map PM into the GPU virtual address space, which
allows direct access to PM from GPU. LightCheck further uses
CUDA (i.e., compute unified device architecture) streams and
events to overlap GPU-PM data transfer via GPU computation.
To improve the PM write throughput, LightCheck separates the
storage of tensor metadata and tensor data in PM, thus making
tensor data accesses continuous for small writes and aligned
for large writes. Furthermore, for ease of use, we extend
the high-level training framework to facilitate the availability
of LightCheck, users can easily use LightCheck to achieve
fast checkpointing in the DNN training without any code
modification to existing DNN training frameworks.

To show the efficiency of our LightCheck, we compare
LightCheck with state-of-the-art checkpointing schemes on
six popular DNN models. The experimental results show
that LightCheck provides 10× higher checkpointing fre-
quency with lower runtime overhead in distributed DNN
training, compared with the state-of-the-art schemes. In addi-
tion, LightCheck significantly reduces the re-training time for
failure recovery. The collection of GPU utilization statistics
further indicates that LightCheck incurs no GPU resource
utilization degradation when performing checkpointing. Be-
sides, we demonstrate that LightCheck does not decrease
the final accuracy of the trained model when resumed from
the checkpoints. Moreover, the results also demonstrate the
efficiency of our separated checkpoint data storage, which
improves the PM write throughput by up to 2.8×. Through
extensive analysis, LightCheck shows great abilities to offer
efficient checkpointing for distributed DNN training.

II. BACKGROUND AND RELATED WORK

A. DNN Training

To achieve high accuracy, DNNs need to be trained with
massive training data. Due to the complex structures of DNN
models and large volumes of training data, the training is often
a time-consuming task. To improve the training performance,
distributed DNN training has been widely used, which is
divided into two types: data parallel and model parallel. In the
data parallel training, different training nodes have the same
parameters. The training data are partitioned into several non-
overlapping parts and fed to the training nodes. In the model

Node 3

TCP/RDMA

Node 1

Images

Texts

Forward Propagation

Checkpoint

Backward Propagation StoreResume

Output

Loss

Calc.
Gradient

Node 2

Images

Texts

Forward Propagation

Checkpoint

Backward Propagation StoreResume

Output

Loss

Calc.
Gradient

Node 3

Images

Texts

Forward Propagation

Checkpoint

Backward Propagation StoreResume

Output

Loss

Calc.
Gradient

Node 4

Images

Texts

Forward Propagation

Checkpoint

Backward Propagation StoreResume

Output

Loss

Calc.
Gradient

W4W3W2W1

W4W3W2W1W4W3W2W1

W4W3W2W1

Fig. 1: The overview of the distributed DNN training.

parallel training, the whole model is partitioned into several
parts, and different training nodes are responsible for training
different parts of the model. We focus on data parallel training.

As shown in Fig. 1, the model parameters (i.e., weights and
bias) are replicated to all nodes, and the training data (e.g.,
images and texts) are uniformly distributed to all nodes.
Training proceeds in iterations. Each iteration consists of for-
ward propagation, backward propagation, communication, and
updating parameters. Specifically, after processing the input
data into the input tensors, the training system performs tensor
operations on the input tensors and the model parameters to
obtain the output tensors. This procedure is called forward
propagation. Based on the output tensors and loss functions
of DNN models, we calculate the gradients of the model
parameters. This procedure is called backward propagation.
Moreover, we collect the gradients of all nodes via TCP or
RDMA (i.e., remote direct memory access) communication
functions and calculate the global gradients. At the end of an
iteration, each node leverages the global gradients to update
the model parameters via the model optimizer. In general, we
perform the training for multiple epochs. An epoch consists
of several iterations and traverses the entire training dataset.

B. Checkpointing for DNN Training

Training a DNN model consumes high costs, including the
training time and computing resources. The parameters of
the DNN model are maintained in the volatile GPU memory
during training. Any interruption to the training system, e.g.,
system crashes, tasks preemption, or job migration, causes
the training failures. Upon a failure, the training states will
be lost, the DNN needs to re-train from scratch, causing
significant waste of resources. To address this problem, the
model states are periodically checkpointed, i.e., the model
states are persisted into the non-volatile storage. The train-
ing frameworks such as TensorFlow [23] and PyTorch [24]
provide specific functions to save model states as files and
load checkpoints. After interruptions, the system recovers the
DNN training from the checkpoint. However, the intermediate

GPU Memory

Model State

DRAM Snapshot

G
PU

H
os

t

DRAM

GPU Snapshot

PM

Checkpoint

LightCheck-G

LightCheck-C

LightCheck-C

LightCheck-D

LightCheck-G

W4W3W2W1

W4W3W2W1

W4W3W2W1

W4W3W2W1

Fig. 2: Schematic diagram of different checkpointing strategies
in LightCheck.

states/data between the current training point and checkpoint
are lost. Such training loss can be mitigated by increasing
the frequency of checkpoints, which unfortunately introduces
training stall, and hence significantly decreasing the training
performance.

To improve the performance of checkpointing, SCAR [25]
leverages the behavior that machine learning models have
the capability of tolerating perturbations to model parameters,
thus proposes low-cost partial recovery for checkpointing.
DeepFreeze [8] adopts the multi-level checkpointing that is
previously applied to HPC for deep learning, and pipelines
the serialization I/O with model training. It also utilizes tensor
sharding to reduce I/O overhead. Check-N-Run [9] proposes
the incremental checkpointing method based on the parameter
update characteristics of recommendation models, and uses
quantization technique to reduce checkpoint size. Check-
Freq [10] pipelines both model state copy and serialization
I/O with computation to enable iteration-level checkpointing,
and the checkpoint frequency is auto-tuned to control the
checkpoint overhead within a fixed threshold. However, above
checkpointing systems cannot fully utilize the parallelism
among computation, communication, and checkpointing in the
distributed DNN training, thus failing to achieve low-cost
frequent checkpointing.

III. THE DESIGN OF LIGHTCHECK

We present LightCheck, which is a checkpointing system
for facilitating frequent checkpointing with low overheads in
distributed DNN training. LightCheck consists of two main
components, including an efficient checkpointing scheme and
a persistent memory manager. The checkpointing scheme
asynchronously checkpoints the latest updated parts of model
states based on the data dependency between model training
and checkpointing in distributed training process. Moreover,
the persistent memory manager enables effective data transfer
between GPU memory and persistent memory by mapping PM
into GPU virtual memory space and organizing the storage
location of checkpoint data in PM. Besides, LightCheck is
integrated into the high-level training framework, providing
a transparent and automatic checkpointing approach to users.
When interruptions happen, LightCheck loads the latest check-
point from PM to resume training.

U

Execution flow of CheckFreq

Execution flow of LightCheck

B3

Training Stream

Checkpointing
Stream

B Backward Propagation

F Forward Propagation

C Communication

U Update Parameters

CHK Checkpointing

B2 B1

C3 C2 C1 U

F3 F2 F1 B3 B2 B1

C3 C2 C1

CHK

Stall

B3 B2 B1

Training Stream

CHK3 CHK2 CHK1Checkpointing
Stream

F3 F2 F1 B3 B2 B1 No Stall

U3 U2C3 C2 C1 U1 U3 U2C3 C2 C1 U1

Fig. 3: The execution flows of LightCheck and CheckFreq.

A. Checkpointing Strategies

To efficiently perform checkpointing with minimum inter-
ference to the training process, we consider different trade-offs
in LightCheck. There are three different checkpointing strate-
gies in LightCheck, including LightCheck-G, LightCheck-
C, and LightCheck-D (Fig. 2). Specifically, LightCheck-G
constructs a copy of model states in GPU memory and writes
the copy from GPU memory to PM. Since writing a copy
in GPU memory is much faster than writing a copy in CPU
memory or PM, LightCheck-G consumes minimal snapshot
time. However, LightCheck-G suffers from high GPU memory
consumption. Furthermore, LightCheck-C replicates the model
states from GPU memory to CPU memory and then saves
the CPU copy into PM. LightCheck-C can leverage existing
GPU-CPU and CPU-PM data paths but may interfere with
the running processes (e.g., preprocessing input images) on
the CPU. LightCheck-D directly transfers the model states
from GPU memory to PM in a layer-wise way. LightCheck-
D does not need extra GPU and CPU resource consumption
for copying model states. However, since PM has a lower
bandwidth than DRAM and exhibits complex performance
characteristics [21], for LightCheck-D, we carefully write
checkpoint data to PM to fully utilize PM bandwidth.

B. Asynchronous Layer-wise Checkpointing

In general, the DNN training framework performs epoch-
level checkpointing in a monolithic and synchronous way to
guarantee the consistency of checkpoint data. If the parameters
are updated during the execution of the checkpoint operation,
the checkpoint data may be partially updated, which would
corrupt the checkpoint file. Hence, during checkpointing, the
training framework stalls the training and continues training af-
ter completing checkpointing. Such design ensures checkpoint
data consistency since the model states remain unchanged
during checkpointing, and thus the training can recover from
the checkpoints. However, the synchronous checkpointing
incurs high overheads, i.e., decreasing the computing resource
utilization and increasing the overall training time.

Recent asynchronous DNN checkpointing schemes, such as
CheckFreq [10], pipeline the checkpointing process with the
forward and backward propagations to reduce training stall
time incurred by checkpointing and performs iteration-level
checkpointing. The top half in Fig. 3 shows the execution flow
of CheckFreq when training a DNN model with three layers
on multiple training nodes (C1 indicates the communication
of layer 1). CheckFreq starts the checkpoint operation of

GPU
SM ...SM SM

L2 Cache

GPU Memory

SnapshotModel

PC
Ie

CPU

Core ...Core Core

LLC

DDR-TPM DRAM DDR-T

Checkpoint Snapshot

Fig. 4: The interconnections among GPU, CPU and PM.

iteration i after updating the parameters and further executes
the training computation phases (i.e., forward and backward
propagation) of iteration i + 1 and checkpointing of iteration
i in parallel. When the parameter update phase of iteration
i + 1 arrives, the training is blocked to wait for completing
the checkpoint operation of iteration i. However, CheckFreq is
sub-optimal due to the monolithic checkpointing process (i.e.,
the whole model states are continuously copied at once). In
addition, CheckFreq does not fully explore the data depen-
dency in the training process. Unlike CheckFreq, we explore
and exploit the data dependency of distributed DNN training
models to reduce the runtime overhead of checkpointing.

LightCheck introduces the asynchronous layer-wise check-
pointing design for distributed DNN training models. We
observe that the communication for model parameter syn-
chronization often accounts for a large fraction of training
time in the distributed DNN training [26], [27], which can be
pipelined with checkpointing. Multiple nodes synchronize the
model parameters layer-by-layer during communication. For
example, in a communication scheduler with the FIFO order,
when the backward propagation of layer i+ 1 is finished, the
scheduler needs to wait until the parameter synchronization
for layer i to finish and then starts the parameter transmission
for layer i+ 1 through underlying communication stack.

Based on this observation, our LightCheck pipelines check-
pointing with computation and communication to embed
checkpointing into the training data flow. Since the check-
pointing of iteration i needs to be completed before updating
the corresponding parameters in iteration i + 1, the check-
pointing needs to be performed as soon as possible. When
the gradient synchronization and parameters update of one
layer are finished, the checkpointing of this layer is ready
to start. We put the checkpoint operation into a FIFO queue
and asynchronously execute it using a background thread.
To guarantee the checkpoint data consistency, LightCheck
starts the checkpointing of layer j in iteration i after the
parameter synchronization of this layer, and the updates to
layer j of iteration i + 1 need to wait for ongoing check-
pointing of layer j to complete. The bottom half in Fig. 3
shows the LightCheck’s execution flows of model training and
checkpointing. By executing computation and communication
in parallel during checkpointing, LightCheck asynchronously
schedules the layer-wise checkpointing, thus improving the
training resources utilization in case of interruptions.

C. The Interconnection between GPU and PM

Currently, GPU-CPU [28] and CPU-PM [29] systems have
been widely studied for a long time, but there are few discus-
sions on how GPU accesses PM. CUDA library provides three

techniques for developers to facilitate the data communication
between host memory and GPU [30]. The first one is the
direct memory access (DMA) technique, which utilizes a
pinned buffer as a staging area for the data transfer between
host memory and GPU memory. Since we can leverage the
DAX feature of PM to directly map PM into CPU address
space, this technique can be applied to persistent memory.
We can transfer data between PM and GPU memory via
cudaMemcpy API through the DMA data path. However,
transferring data through the DMA data path still needs to go
through the pinned buffer in the CPU memory, hindering the
transfer performance. The second one is the unified memory
(UM) technique, which further manages the device and host
memory in the global memory address space, and automati-
cally migrates memory pages between PM and GPU memory.
This technique simplifies programming but still needs implicit
page migration, which is hard to expand unified memory to
include PM. The third one is the unified virtual addressing
(UVA) technique, which enables zero-copy access over PCIe
using the global memory address space. This technique allows
GPU kernels to directly access PM after mapping PM into
GPU virtual address space. Compared with DMA and UM, the
UVA technique enables high performance and improves easy
of use. Hence, we use the UVA technique to transfer data
between PM and GPU memory in LightCheck. Specifically,
LightCheck first maps PM into GPU virtual address space.
LightCheck then disables data direct IO (DDIO) to control the
destination of GPU writes via PCIe, since GPU moves the data
into the last level cache (LLC) with DDIO enabled (Fig. 4).
GPM [19] has revealed that disabling DDIO with a GPU
fence instruction (i.e., threadfence system()) is capable
of guaranteeing data persistence.

In tandem with the asynchronous layer-wise checkpointing
design, LightCheck pipelines the data transfer between GPU
and PM with GPU computation. The memory copies are
performed on an extra CUDA stream by using the background
thread. In addition, since the training needs to check whether
the checkpointing process has finished, LightCheck monitors
the progress of GPU-PM memory copies via CUDA events.
After initiating a data transfer task, LightCheck records a
CUDA event to mark a GPU stream execution. When the
CUDA event is ready, it is guaranteed that all tasks that launch
before the event have been completed.

D. Checkpoint Storage Management

For checkpointing, except for tensor metadata and some
additional states (e.g., current epoch, current iteration, and
training data index), almost all data are constructed in the
tensor format. In general, the checkpoint data are organized in
the form of a dictionary. It is important to replicate and main-
tain the data structure in PM to match the training framework
interface for loading model states (i.e., load state dict()).
However, since PM is sensitive to small random writes [20],
the GPU-PM access via the PCIe interface needs to align with
128-byte granularity for better PCIe bandwidth utilization [30].
A misaligned access generates two separate PCIe requests,

causing high PM write amplification. Therefore, to efficiently
access PM from GPU, LightCheck divides the checkpoint data
space into a data mapping region and a continuous tensor
region. The data mapping consists of the addresses of tensor
data in PM and the number of bytes of tensor data. The data
mapping stored in PM is accessible for all GPUs and CPUs.
Based on the UVA technique, each tensor in PM has a global
virtual address for all GPUs and CPUs, and the processors
can directly write tensors to the corresponding location in PM.
During checkpointing file initialization, LightCheck allocates
PM space and creates the data mapping for tensors. When
allocating space in PM, LightCheck continuously stores small
tensor data according to the access order, and sequentially
allocates memory for tensors larger than 128 bytes at aligned
PCIe granularity in the continuous tensor data region. Thanks
to the separated checkpoint storage management, LightCheck
can significantly alleviate the PM write amplification and
reduce the number of required PCIe requests for writing
checkpoints from GPU memory to PM.

In addition, although the checkpoints are frequently per-
formed, LightCheck only maintains two checkpoint data map-
pings for a training model. Once one checkpoint is completed,
the other checkpoint is obsoleted. Thus, LightCheck overwrites
the obsoleted checkpoint with new checkpoint data, which
reduces the PM space consumption and avoids memory al-
location contention when multiple GPUs and training models
share PM space. If a failure occurs, LightCheck guarantees that
there exists at least one complete checkpoint data for recovery.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conduct experiments on three machines, each of which
is equipped with two 26-core Intel Xeon Gold 6230R CPUs,
one Tesla V100 GPU, 192 GB DRAM, six interleaved 128
GB Intel Optane DC PM modules, 3.6 TB HDD (i.e., hard
disk drive) and one 100 Gbps Mellanox ConnectX-5 Infini-
Band RNIC. The three servers are connected via a 100Gbps
Mellanox InfiniBand switch. All servers are installed with
64-bit Ubuntu 18.04. The CUDA version is 11.1. The PCIe
interconnect is Gen 3.0×16.

We use six representative DNN models in our experiments,
including four image classification models and two language
processing models. The four image classification models
(ResNet-18 [1], AlexNet [31], Inception-V3 [32], and VGG-
16 [33]) use the Imagenet dataset [34], and the two language
processing models (GPT-2 [35] and BERT [36]) use the
WikiText-2 dataset [37]. We use Horovod with PyTorch 1.8.1
as the training framework, which wraps PyTorch optimizer
with Horovod DistributedOptimizer and supports layer-wise
all-reduce communication scheduling [38].

We compare three checkpointing strategies in LightCheck
(i.e., LightCheck-G, LightCheck-C, LightCheck-D) with the
state-of-the-art checkpointing system CheckFreq [10] and
the torch.save() from PyTorch. Unless otherwise stated,
LightCheck uses the LightCheck-D checkpointing strategy.
Since CheckFreq uses disk storage to persist checkpoint data,

TABLE I: The checkpoint sizes and the intervals.

Models Checkpoint
Size (MB)

Checkpointing Interval (iterations)
LightCheck

-G/C/D
LightCheck

-disk
CheckFreq torch.save

ResNet-18 90 1 7 20 102
VGG 16 1,056 6 64 146 904

Inception-V3 183 14 30 40 118
AlexNet 467 8 95 164 1,084
GPT-2 1,508 6 46 100 682
BERT 4,004 10 82 200 1,100

1 . 0
1 . 5

4 . 0

1 . 6
1 . 0

2 . 5
2 . 0 2 . 0

2 . 8
2 . 1 2 . 2

2 . 7
2 . 0

3 . 2
4 . 0

2 . 1 1 . 8

3 . 2

2 . 0

3 . 8
4 . 4 4 . 2

2 . 6
3 . 5

4 . 0

5 . 9
5 . 2

4 . 5
4 . 9

4 . 4
3 . 7

4 . 4

6 . 4
6 . 0

5 . 1
4 . 4

R e s N e t - 1 8 V G G - 1 6 I n c e p t i o n - V 3 A l e x N e t G P T - 2 B E R T
0

2

4

6

8

Ru
nti

me
 O

ve
rhe

ad
 (%

)

 L i g h t C h e c k - G L i g h t C h e c k - C L i g h t C h e c k - D L i g h t C h e c k - d i s k
 C h e c k F r e q C h e c k F r e q - s a m e t o r c h . s a v e t o r c h . s a v e - s a m e

1 4 . 0 5 7 . 6 1 5 . 9 7 0 . 0 8 . 1 2 3 . 0 1 1 . 0 6 6 . 0 1 3 . 4 7 4 . 8 1 4 . 2 6 9 . 0

Fig. 5: The runtime overheads of different checkpointing
systems.

we implement our asynchronous layer-wise checkpointing to
write checkpoint data into disks, called LightCheck-disk, to fa-
cilitate fair comparisons. Besides, we evaluate CheckFreq and
torch.save with the same checkpoint frequency as LightCheck-
disk, i.e., CheckFreq-same and torch.save-same.

B. Checkpointing Performance

Checkpointing Overhead. We compare the checkpointing
frequency and runtime overhead of different checkpointing
strategies with multiple DNN models. Table I shows the
model sizes of different DNN models and the checkpointing
intervals in different checkpointing strategies that limit runtime
overhead within a threshold (i.e., 5%). For example, in ResNet-
18, LightCheck-G/LightCheck-C/LightCheck-D/LightCheck-
disk/CheckFreq save a checkpoint per 1/1/1/7/20 iterations.
Note that the checkpointing frequency of CheckFreq follows
its open-source code. Fig. 5 shows the runtime overheads of
different checkpointing strategies in distributed DNN training.

From the experimental results, we obtain the following
observations. First, compared with CheckFreq, LightCheck-
G/LightCheck-C/LightCheck-D enables more than 10× higher
checkpointing frequency with lower runtime overhead for
most DNN models. For example, the runtime overhead of
LightCheck is only up to 4%, i.e., LightCheck-D in Inception-
V3. The reason is that LightCheck efficiently pipelines check-
pointing with communication and computation in the training
process. Moreover, these results show that LightCheck incurs
negligible runtime overhead when performing frequent check-
pointing, which is important for unstable training scenarios.
In fact, checkpointing efficiency is critical to the systems that
frequently perform transparent preemption and migration for
training tasks in a GPU cluster. Second, our LightCheck-disk
also outperforms CheckFreq in all evaluated models. Specifi-
cally, LightCheck-disk significantly reduces up to 10% runtime
overhead compared with CheckFreq-same. The improvement
stems from our asynchronous layer-wise checkpointing in
LightCheck. Third, LightCheck efficiently exploits PM to
improve checkpointing performance. LightCheck-disk not only
consumes a long time to complete but also suffers from

0 . 2

2 . 4
3 . 4

1 . 0
2 . 0

7 . 0

0 . 2

2 . 4
3 . 4

1 . 0
2 . 0

7 . 0

0 . 2

2 . 4
3 . 4

1 . 0
2 . 0

7 . 0

0 . 2

2 . 4
3 . 4

1 . 0
2 . 0

7 . 0

R e s N e t - 1 8 V G G - 1 6 I n c e p t i o n - V 3 A l e x N e t G P T - 2 B E R T
0

5

1 0

1 5
Re

co
ve

ry
Tim

e (
s)

 L i g h t C h e c k - G L i g h t C h e c k - C L i g h t C h e c k - D L i g h t C h e c k - d i s k
 C h e c k F r e q C h e c k F r e q - s a m e t o r c h . s a v e t o r c h . s a v e - s a m e

2 . 5 2 . 5

4 04 0 1 6 51 6 5

8 . 7 8 . 7

2 62 6 1 8 1 8 7 1 7 1 3 1 3 1 2 0 5 2 0 5 9 7 9 7 5 1 7 5 1 7

1 2 1 2

Fig. 6: The recovery times of different checkpointing systems.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0
0

2 5

5 0

7 5

Me
mo

ry
Uti

liza
tio

n (
%)

T i m e (s)

 L i g h t C h e c k C h e c k F r e q

S t a l l S t a l l S t a l l

Fig. 7: The GPU memory utilizations of LightCheck and
CheckFreq.

the coarse-grained scheduling in the training system and the
high startup overhead of store operation. On the other hand,
LightCheck benefits from its fine-grained thread scheduling
and the direct data transfer path with fast PM. Fourth, com-
pared with LightCheck-G and LightCheck-C, LightCheck-D
achieves comparable checkpointing performance without extra
memory consumption, which demonstrates the effectiveness of
direct GPU-PM data transfer. The reason is that LightCheck-
D fully utilizes the PCIe bandwidth by organizing the storage
location of checkpoint data in PM.
Recovery Time. We evaluate the time overhead of recovering
the training models from checkpoints. The recovery time
consists of the time to load the model states from the latest
saved checkpoint and re-train the model to the state before
the interruption. Hence, the recovery time depends on the
checkpoint frequency. If the checkpoint frequency is high,
only a few iterations of training progress are lost after the
interruption, and thus the re-training time is short. As shown in
Fig. 6, with LightCheck, training can be resumed within 7 sec-
onds for all models. Compared with CheckFreq and torch.save,
LightCheck significantly improves the recovery performance.
The three checkpointing strategies of LightCheck have similar
recovery performances. For example, they reduce the recovery
time to 7 seconds when training the BERT model.
Resource Utilization. We monitor and record the GPU
memory utilization and computation utilization through the
NVIDIA system management interface every 50 ms when
training VGG-16 model. As shown in Fig. 7, LightCheck
improves the memory utilization up to 60% higher than that
of CheckFreq during training. Besides, the memory utilization
of CheckFreq drops to 0 when performing checkpointing,
which significantly affects the training performance. Unlike
CheckFreq, our LightCheck shows stable memory utilization,
because the asynchronous layer-wise checkpointing is efficient
to mitigate the waste of GPU resources during checkpoint
saving. The computation utilization exhibits a similar trend
as the memory utilization (Fig. 8).
Total Training Time. We evaluate the impact of different

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0
0

2 5
5 0
7 5

1 0 0

Co
mp

uta
tio

n U
tiliz

ati
on

 (%
)

T i m e (s)

 L i g h t C h e c k C h e c k F r e q

S t a l l S t a l l S t a l l

Fig. 8: The GPU computation utilizations of LightCheck and
CheckFreq.

TABLE II: The total training time of different checkpointing
systems.

Models
Total Training Time (h)

No Failure LightCheck CheckFreq torch.save

ResNet-18 10.7 10.9 11.1 11.2
VGG 16 67.5 69.7 72.3 73.7

Inception-V3 79.7 83.0 84.1 85.4
AlexNet 6.0 6.1 6.3 6.5
GPT-2 161.7 164.6 171.1 179.7
BERT 501.3 514.8 537.5 598.6

checkpointing strategies on total training time in the presence
of failures. We inject failures into the training process with a
fixed MTBF (i.e., one hour) and record the total training time
of different checkpointing strategies. Table II shows the total
training time of different checkpointing systems. Compared
with CheckFreq and torch.save, LightCheck mitigates the im-
pact of failures on total training time. We further demonstrate
the impact of MTBF on total training time. Fig. 9 shows
the total training time with different MTBFs when training
BERT. The ideal line exhibits the total training time when
training without failures. LightCheck provides lower total
training time than CheckFreq and torch.save. Moreover, when
failures frequently occur, the total training time of torch.save
significantly increases, while LightCheck can maintain stable
total training time.

C. The Benefits of Asynchronous Layer-wise Checkpointing

To better understand the performance benefit of the asyn-
chronous layer-wise checkpointing scheme, we evaluate the
runtime overheads of checkpointing when using persistent
memory to save checkpoints for both LightCheck and Check-
Freq. LightCheck directly copies the model states from GPU
memory to PM in a layer-wise way. Here, CheckFreq-PM also
copies the entire model state to PM after updating parameters,
and does not need to persist the copy, since this copy has
already existed in PM. When the corresponding parameter
update phase of the next iteration arrives, if the checkpoint
operation is not completed, the model training is blocked to
guarantee checkpoint data consistency. We measure the three
large DNN models. As shown in Fig. 10, LightCheck incurs
up to 10% runtime overhead when performing checkpointing,
while the runtime overhead of CheckFreq-PM is up to 41%.
The experimental results show that the asynchronous layer-
wise checkpointing scheme significantly reduces the runtime
overhead.

D. Efficiency of Separated Checkpoint Storage Management

We measure the benefits of the optimized checkpoint data
storage. When initializing the checkpoint data structure in

0 5 1 0 1 5 2 04 5 0

6 0 0

7 5 0

9 0 0

1 , 0 5 0

To
tal

 Tr
ain

ing
 Ti

me
 (h

) t o r c h . s a v e C h e c k F r e q
 L i g h t C h e c k I d e a l

M T B F (h)

0 1 2 34 5 0

6 0 0

7 5 0

Fig. 9: The impact of MTBF on the total training time.

7 . 5 4 8 . 5 4 9 . 4 2

3 2 . 4 8
2 7 . 4 4

4 1 . 0 2

V G G - 1 6 G P T - 2 B E R T0

1 0

2 0

3 0

4 0

5 0

Ru
nti

me
 O

ve
rhe

ad
 (%

) L i g h t C h e c k C h e c k F r e q - P M

Fig. 10: The checkpointing
overheads of LightCheck and
CheckFreq-PM.

2 6 . 4 8

2 2 7 . 5 6

9 2 . 6 2 1 0 6 . 8 8

4 7 9 . 2 2
9 4 9 . 0 4

1 0 . 8 4

9 6 . 4 6
3 0 . 1 4 3 . 7 6

1 4 8 . 0 6

3 5 0 . 9 4

R e s N e t - 1 8 V G G - 1 6 I n c e p t i o n - V 3 A l e x N e t G P T - 2 B E R T0

1 5 0

3 0 0

4 5 0

1 0 5 0

Ch
ec

kp
oin

tin
g T

im
e (

ms
) B a s e l i n e

 S e p a r a t e d

Fig. 11: The checkpointing
times of different checkpoint
storage managements.

the dictionary form, the Baseline does not distinguish the
checkpoint data attributes (e.g., tensor metadata, tensor data,
or some additional states) and stores them together in PM.
Therefore, when saving checkpoints, tensor data will be writ-
ten out-of-order, causing high write amplification. In contrast,
the Separated storage management continuously writes tensor
data, keeping the write amplification at 1× and reducing the
number of PCIe requests for transferring the same amount of
data. Fig. 11 shows the checkpointing time for various models
in PM. The separated storage achieves 2.1-2.8× speedup
compared with the Baseline, demonstrating its effectiveness
in fully utilizing PM and PCIe bandwidth.

E. The Impact of Data Direct IO (DDIO) on Checkpointing

We observe that DDIO has a great performance impact on
the data transfer between GPU memory and PM. As shown in
Fig. 12, the throughput of GPU sequential writes only reaches
3.5 GB/s with DDIO enabled. On the other hand, the write
throughput achieves 11.5 GB/s with DDIO disabled, which is
close to the maximum bandwidth of PCIe 3.0. The reason
is that when DDIO is enabled, GPU sequential writes are
first cached in the last level cache (LLC), and then the LLC
randomly evicts data to PM at the cache-line granularity. The
GPU sequential writes are changed to random writes, thus
causing high write amplification. We further measure PM write
amplification when running the sequential access benchmark
via ipmctl tool. The results show that enabling DDIO incurs
about 2.6-3.0× write amplification for sequential GPU writes
under various payload sizes (Fig. 13). In contrast, disabling
DDIO keeps the write amplification around 1×. Overall,
disabling DDIO provides better checkpointing performance.

F. Checkpointing in GPU Cluster Scheduling

We evaluate the effect of checkpointing in frequent preemp-
tive scheduling scenarios. We adopt the Gavel [6] scheduler to

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 , 0 2 4 2 , 0 4 8 4 , 0 9 60

5

1 0

1 5

Th
rou

gh
pu

t (G
B/s

)

P a y l o a d S i z e (K B)

 E n a b l e D D I O
 D i s a b l e D D I O

Fig. 12: The write through-
puts of checkpointing with and
without DDIO.

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 , 0 2 4 2 , 0 4 8 4 , 0 9 60

1

2

3

4

Wr
ite

 Am
plif

ica
tio

n

P a y l o a d S i z e (K B)

 E n a b l e D D I O D i s a b l e D D I O

Fig. 13: The write amplifi-
cations of checkpointing with
and without DDIO.

TABLE III: The effects of different checkpointing systems on
GPU cluster scheduling.

Checkpointing
Systems

Trace Metrics Physical (h) Simulation (h)

torch.save static average JCT 2.38 2.33
LightCheck static average JCT 2.20 2.09
torch.save continuous average JCT 1.67 1.60

LightCheck continuous average JCT 1.38 1.37

run the least attained service (LAS) policy [39] with physical
and simulated experiments on two types of traces: 1) Static.
All jobs arrive when starting execution. 2) Continuous. Jobs
are continuously added during execution. Gavel sets the round
duration to 6 minutes, which means that it computes job
allocation according to LAS and switches tasks to be executed
in every round. By default, the state of preempted jobs is
saved via torch.save(). For efficient comparisons, we use
our LightCheck to checkpoint the preempted jobs. The two
traces in the physical experiments run 25 jobs on 3 machines,
and the job types are uniformly sampled from the six DNN
models. As shown in Table III, compared with torch.save,
LightCheck reduces average job completion time by 8% and
17% for the static and continuous traces, respectively. In
the simulation, we inject preemption overheads measured by
running specific models on actual GPUs. The results show that
the difference between physical evaluation and simulation is
small. Furthermore, we simulate a cluster with 90 NVIDIA
V100 GPUs, the trace has varied input job rates, and the
completion time of jobs with ID 4,000-5,000 is measured.
The results show that LightCheck reduces average JCT by
12% at the low load rate, and supports the higher load rate
than torch.save (Fig. 14).

G. Model Accuracy

We demonstrate the impact of checkpointing on accuracy.
We train the ResNet-18 model to the target accuracy (i.e.,
96%) using the mini-imagenet dataset. We train ResNet-18
in two different scenarios: 1) No interruption. The model is
trained without interruption until its completion. LightCheck
does not perform checkpointing in this scenario. 2) Resumed
from checkpoints. In this scenario, LightCheck performs
checkpointing during model training. The training process is
interrupted at the fixed interval (one epoch), then resumes from
the latest checkpoint and continues to train the model. We
present the top-1 validation accuracy against the cumulative
training time in Fig. 15. The final model accuracy of the
second training scenario is similar to that of the model

3 . 2 3 . 6 4 . 0 4 . 4 4 . 8 5 . 2 5 . 6 6 . 00

5 0

1 0 0

1 5 0
Av

era
ge

 JC
T (

h)

I n p u t J o b R a t e (j o b s / h)

 t o r c h . s a v e
 L i g h t C h e c k

Fig. 14: The simulated av-
erage JCT with different in-
put job rates under different
checkpointing systems in GPU
cluster scheduling.

0 5 0 0 1 , 0 0 0 1 , 5 0 0 2 , 0 0 0 2 , 5 0 0 3 , 0 0 0 3 , 5 0 00

2 0

4 0

6 0

8 0

1 0 0

To
p-1

 Ac
cu

rac
y (

%)

T i m e (s)

 R e s u m e f r o m c h e c k p o i n t s
 N o i n t e r r u p t i o n

9 6 %

Fig. 15: The top-1 validation
accuracy against the
cumulative training time
when training ResNet-18 with
LightCheck.

without interruption, which indicates that the checkpointing
in LightCheck has a negligible impact on training accuracy.

V. CONCLUSION

Distributed DNN training is important for AI applications
in many domains. While distributed DNN training requires
checkpointing for failure tolerance, it is a challenge to provide
frequent checkpointing with low runtime overhead. In this
work, we present LightCheck, a lightweight checkpointing
system for distributed DNN training. We propose an efficient
checkpointing scheme and a persistent memory manager for
LightCheck to achieve fast checkpointing. The checkpointing
scheme achieves fine-grained asynchronous checkpointing by
pipelining checkpointing with computation and communica-
tion in a layer-wise way, which reduces the checkpointing
overhead in DNN training. Moreover, the persistent memory
manager enables effective data access to PM from GPU by
mapping PM into GPU virtual memory space and separating
the storage of tensor metadata and tensor data in PM. Our
experimental results show that LightCheck reduces the run-
time overhead of checkpointing while providing 10× higher
checkpointing frequency in distributed DNN training.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[2] T. B. Brown, B. Mann et al., “Language models are few-shot learners,”
in NIPS, 2020.

[3] S. Casas, A. Sadat, and R. Urtasun, “MP3: A unified model to map,
perceive, predict and plan,” in CVPR, 2021.

[4] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in ICSE,
2020.

[5] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn
training workloads,” in USENIX ATC, 2019.

[6] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in OSDI, 2020.

[7] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in OSDI, 2018.

[8] B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier, and F. Cappello,
“Deepfreeze: Towards scalable asynchronous checkpointing of deep
learning models,” in CCGRID, 2020.

[9] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Krishnamoorthi,
K. Nair, M. Smelyanskiy, and M. Annavaram, “Check-n-run: a check-
pointing system for training deep learning recommendation models,” in
NSDI, 2022.

[10] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent,
fine-grained dnn checkpointing,” in FAST, 2021.

[11] C. Ruan, Y. Zhang, C. Bi, X. Ma, H. Chen, F. Li, X. Yang, C. Li,
A. Aboulnaga, and Y. Xu, “Persistent memory disaggregation for cloud-
native relational databases,” in ASPLOS, 2023.

[12] H. Bae, M. Kwon, D. Gouk, S. Han, S. Koh, C. Lee, D. Park, and
M. Jung, “Empirical guide to use of persistent memory for large-scale
in-memory graph analysis,” in ICCD, 2021.

[13] X. Li, H. Cui, and L. Liu, “NRHI: A concurrent non-rehashing hash
index for persistent memory,” in ICCD, 2021.

[14] X. Liu, Y. Hua, and R. Bai, “Consistent rdma-friendly hashing on remote
persistent memory,” in ICCD, 2021.

[15] W. Kim, C. Park, D. Kim, H. Park, Y. Choi, A. Sussman, and B. Nam,
“Listdb: Union of write-ahead logs and persistent skiplists for incremen-
tal checkpointing on persistent memory,” in OSDI, 2022.

[16] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in FAST, 2016.

[17] M. Zhang, Y. Hua, P. Zuo, and L. Liu, “FORD: fast one-sided rdma-
based distributed transactions for disaggregated persistent memory,” in
FAST, 2022.

[18] P. Markthub, M. E. Belviranli, S. Lee, J. S. Vetter, and S. Matsuoka,
“Dragon: breaking gpu memory capacity limits with direct nvm access,”
in SC, 2018.

[19] S. Pandey, A. K. Kamath, and A. Basu, “Gpm: leveraging persistent
memory from a gpu,” in ASPLOS, 2022.

[20] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the idiosyncrasies
of real persistent memory,” in VLDB, 2020.

[21] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in FAST, 2020.

[22] Y. Chen, J. Shu, J. Ou, and Y. Lu, “Hinfs: A persistent memory file
system with both buffering and direct-access,” in TOS, 2018.

[23] M. Abadi, P. Barham et al., “Tensorflow: A system for large-scale
machine learning,” in OSDI, 2016.

[24] A. Paszke, S. Gross et al., “Pytorch: An imperative style, high-
performance deep learning library,” in NIPS, 2019.

[25] A. Qiao, B. Aragam, B. Zhang, and E. Xing, “Fault tolerance in iterative-
convergent machine learning,” in ICML, 2019.

[26] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication archi-
tecture for distributed deep learning on gpu clusters,” in USENIX ATC,
2017.

[27] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in SOSP, 2019.

[28] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “ZeRO-Offload: Democratizing Billion-Scale model
training,” in USENIX ATC, 2021.

[29] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm, “Evaluating
persistent memory range indexes,” in VLDB, 2019.

[30] S. Min, K. Wu, S. Huang, M. Hidayetoglu, J. Xiong, E. Ebrahimi,
D. Chen, and W. W. Hwu, “Large graph convolutional network training
with gpu-oriented data communication architecture,” in VLDB, 2021.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in CVPR, 2016.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[34] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in NIPS, 2016.

[35] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” in OpenAI blog,
2019.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in arXiv
preprint arXiv:1810.04805, 2018.

[37] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” in arXiv preprint arXiv:1609.07843, 2016.

[38] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” in arXiv preprint arXiv:1802.05799, 2018.

[39] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. H.
Liu, and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in NSDI, 2019.

	Introduction
	Background and Related Work
	DNN Training
	Checkpointing for DNN Training

	The Design of LightCheck
	Checkpointing Strategies
	Asynchronous Layer-wise Checkpointing
	The Interconnection between GPU and PM
	Checkpoint Storage Management

	Performance Evaluation
	Experimental Setup
	Checkpointing Performance
	The Benefits of Asynchronous Layer-wise Checkpointing
	Efficiency of Separated Checkpoint Storage Management
	The Impact of Data Direct IO (DDIO) on Checkpointing
	Checkpointing in GPU Cluster Scheduling
	Model Accuracy

	Conclusion
	References

