
DALdex: A DPU-Accelerated Persistent Learned Index
via Incremental Learning

Aoyang Tong
Huazhong University of Science

and Technology
Wuhan, China

aoyangtong@hust.edu.cn

Yu Hua∗
Huazhong University of Science

and Technology
Wuhan, China

csyhua@hust.edu.cn

Menglei Chen
Huazhong University of Science

and Technology
Wuhan, China

chenml@hust.edu.cn

Abstract
The Data Process Unit (DPU) specializes in offloading CPU-
intensive tasks and provides efficient fault tolerance through
hardware-level isolation. This brings unique opportunities
to develop persistent indexes with high performance and
availability in High Performance Computing (HPC) systems.
The recent learned index exploits machine learning mod-
els to efficiently fit data distributions, exhibiting superior
performance and low storage costs, which is a promising
alternative to traditional tree-based range indexes. However,
state-of-the-art persistent learned indexes suffer from costly
model retrainings and inefficient recoverymechanisms based
on Non-Volatile Memory (NVM), making them inefficient to
be offloaded to DPUs.

To address these challenges, we propose DALdex, a CPU-
DPU hybrid persistent learned index with high performance
and availability. To mitigate model retraining overheads,
DALdex offloads retraining tasks to DPU based on the in-
cremental learning scheme. To minimize NVM amplifica-
tions, DALdex designs an NVM-friendly index structure that
is decoupled into a DRAM-accelerated model layer and an
NVM-aware block layer. Moreover, DALdex utilizes the hard-
ware isolation feature of DPU to achieve seamless failover
and instant recovery via the PCIe bus. Extensive evaluation
results demonstrate that DALdex outperforms state-of-the-
art persistent indexes by 1.07-6.34× with minimal DRAM
and NVM overheads. The open-source code of DALdex is
available at https://github.com/CitySkylines/DALdex.
∗Corresponding Author: Yu Hua (csyhua@hust.edu.cn).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725750

CCS Concepts
• Information systems → Data structures; • Computer
systems organization;

Keywords
Data Process Unit, Learned Index, Non-Volatile Memory

ACM Reference Format:
Aoyang Tong, Yu Hua, and Menglei Chen. 2025. DALdex: A DPU-
Accelerated Persistent Learned Index via Incremental Learning. In
2025 International Conference on Supercomputing (ICS ’25), June
08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3721145.3725750

1 Introduction
The in-memory index is a crucial component in HPC systems
for efficient data reads and writes [27]. However, traditional
tree-based range indexes exhibit inefficient index operations
and large memory consumption due to sophisticated struc-
tures [33, 57]. For example, state-of-the-art tree-based range
indexes consume up to 55% of the total memory in popular
HPC systems [70], which presents significant challenges to
DRAM capacity. Moreover, due to the existence of the mem-
ory wall [62], DRAM exhibits limited scalability in band-
width as well as capacity, which becomes insufficient for
in-memory indexing in HPC systems.
Byte-addressable NVM (e.g., PCM [6, 29, 59], STT-RAM

[3], ReRAM [1] and Intel Optane DC PMEM [19]) offers per-
sistent storage, large capacity, and DRAM-comparable access
latency, which can efficiently alleviate memory bottlenecks
at a low cost. Therefore, there arise plenty of research works
and practical applications on NVM, including indexes [4, 7, 8,
18, 36, 38, 46, 65, 74], key-value stores [9, 21, 23, 52] and file
systems [20, 66, 72], etc. These works typically employ tradi-
tional tree-based range indexes with several NVM-optimized
techniques such as unsorted leaf nodes [7], bitmaps [36], fin-
gerprints [69], and selective consistencymechanisms [46, 65],
etc. However, due to the unawareness of data distribution
patterns, traditional tree-based range indexes fail to flexibly
design the internal tree structure, thus leading to excessive
NVM accesses in dynamic scenarios.

https://orcid.org/0009-0000-4460-2327
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-5782-2361
https://github.com/CitySkylines/DALdex
https://doi.org/10.1145/3721145.3725750
https://doi.org/10.1145/3721145.3725750

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

1 0 2 0 4 0 6 0 8 0 1 0 0
0
1
2
3
4

Re
tra

inin
g T

im
e (

Se
c)

R e t r a i n i n g S i z e (M)

 H D D
 S S D
 N V M
 D R A M

(b) R e t r a i n i n g T i m e o n D P U s

1 0 2 0 4 0 6 0 8 0 1 0 00
5

1 0
1 5
2 0
2 5

Re
tra

inin
g T

im
e (

Se
c)

R e t r a i n i n g S i z e (M)
(a) R e t r a i n i n g T i m e o n C P U s

Figure 1: Model retraining time across various sizes.

The Learned Index leverages machine learning models
to predict the position of a given key in sorted data nodes,
offering high performance and low storage costs [27]. By
fitting data distribution patterns, learned indexes can effi-
ciently locate the target key-value pair without sophisticated
structures. Therefore, learned indexes typically hold huge
data nodes with a flat index structure of two or three layers.
However, learned indexes are initially designed for volatile
DRAM, making it inefficient to simply migrate them to NVM
without further optimizations. Specifically, designing an ef-
ficient persistent learned index with high performance and
availability based on NVM poses the following challenges:
Challenge 1: Expensive Model Retrainings. Learned

indexes necessitate repeated model retrainings to preserve
model accuracy, as data distributions constantly change with
new insertions. However, the retraining process is extremely
time-consuming, especially on low-speed storage devices. As
shown in Figure 1(a), the model retraining time dramatically
grows as the data size increases. For example, retraining a
linear regression model with 100M data on disks consumes
up to 4.1 seconds, which is about 16.1× than DRAM. Such
delay would significantly block normal index operations and
lead to high indexing latency. Therefore, reducing model
retraining overheads is a key challenge for learned indexes
to reduce indexing latency and improve performance.

Challenge 2: Excessive NVM Accesses. Byte-addressable
NVM exhibits lower performance metrics than DRAM. For
example, Intel Optane DC PMEM exhibits 2–3× higher access
latency and 3–14× lower bandwidth compared to DRAM [37,
63, 64]. Therefore, excessive NVM accesses would rapidly
saturate the limited NVM bandwidth and significantly de-
crease system performance. As a result, persistent learned
indexes need to carefully manage NVM accesses, especially
model accesses on the critical path of learned index opera-
tions. However, state-of-the-art persistent learned indexes
fail to address this challenge due to inefficient management
of learned models. For example, APEX [37] is a DRAM-NVM
hybrid persistent learned index that stores learned models
and key-value pairs in NVM for persistence, and stores par-
tial metadata in DRAM for performance. PLIN [71] is an
NVM-only persistent learned index that stores all compo-
nents including learned models in NVM to achieve instant

recovery. However, both schemes have to store learned mod-
els in NVM, resulting in excessive model accesses to NVM
on the critical path.

Challenge 3: Inefficient Recovery Mechanisms. System
crashes are among the most common failures in real-world
applications due to various software bugs or hardware dam-
ages [12, 28, 68]. Therefore, persistent indexes are widely em-
ployed in HPC systems to enhance availability by instantly
recovering from system crashes. However, state-of-the-art
persistent learned indexes suffer from inefficient recovery
mechanisms by rebuilding partial index structures or redoing
heavy NVM logs [37, 71], which significantly increase the
Mean Time To Repair (MTTR) across system crashes.

To address these challenges, we incorporate DPU into the
persistent learned index to achieve high performance and
availability. DPUs are equipped with dedicated computing
and memory resources bypassing CPUs, making them effi-
cient for offloading and accelerating CPU-intensive tasks [22,
58], especially model retraining tasks in persistent learned
indexes. Besides, DPUs operate in independent systems iso-
lated fromCPUs, enablingDPUs to remain alive and continue
running during CPU-side system crashes [22]. Therefore, by
offloading the index structure to DPU during system crashes,
the availability of persistent learned indexes can be further
improved. Based on these unique hardware features of DPUs,
we proposeDALdex, aDPU-Accelerated Persistent Learned
Index via Incremental Learning.
To mitigate model retraining overheads, we offload re-

training tasks to DPU based on the incremental learning
scheme, which removes model retrainings from the criti-
cal path. Unlike existing offline batched model retraining
schemes [11, 13, 14, 32, 34, 37, 54, 61, 71], the incremental
learning scheme dynamically retrains new models based on
old models with low overheads, enabling DALdex to adap-
tively learn new data distributions during runtime.
To minimize NVM accesses, we decouple DALdex into a

DRAM-accelerated model layer and an NVM-aware block
layer, which frees fast model accesses from slow NVMs. The
space-efficient model structure is maintained in DRAM to
maximize its performance benefits. Meanwhile, to minimize
NVM amplifications, we design an NVM-friendly block struc-
ture that mitigates the mismatched access granularity be-
tween the CPU cache and NVM medium.
To further enhance availability, we utilize the hardware

isolation feature of DPU to achieve seamless failover and
instant recovery. In DALdex, the model retraining tasks are
offloaded to DPU for incremental learning. Therefore, the
offloaded model structure on the DPU side naturally serves
as a backup of the CPU side. By promoting the offloaded
model structure to the primary structure, DALdex can be
entirely offloaded to DPU, allowing seamless failover during
CPU-side system crashes. Besides, upon system restores,

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

PCIe

Network Traffic

PC
Ie

Sw

it
ch

TX
/R

X

DRAM

Host

Learned
Model

Key

Data Predict

Actual Pos
Local Search

(a) Learned Indexes (b) Data Process Units

Figure 2: The structures of Learned Indexes and DPUs.

DALdex can be instantly recovered from the offloaded model
structure on the DPU side through DMA via the PCIe bus.

In summary, we make the following contributions:
• We identify the bottleneck of existing model retraining
schemes in the offline batched training process and
propose an incremental learning scheme to mitigate
model retraining overheads for learned indexes.

• We offload the incremental learning scheme to DPU
to remove model retrainings from the critical path
and utilize the hardware isolation feature of DPU to
achieve seamless failover and instant recovery across
system crashes.

• We analyze the inefficient NVM access patterns of
learned models in state-of-the-art persistent learned
indexes and design an NVM-friendly index structure
to minimize NVM amplifications.

Our evaluation demonstrates that DALdex outperforms
state-of-the-art persistent indexes by 1.07-6.34× with mini-
mal DRAM and NVM overheads. Besides, DALdex achieves
instant recovery in 0.5 seconds on a single thread. We also in-
tegrate DALdex into Redis [49] and achieve the best read and
write performance compared to existing persistent learned
indexes. To the best of our knowledge, DALdex is the first
persistent learned index with the DPU-offloaded scheme.

2 Background
2.1 Learned Index
Learned indexes leverage machine learning models to learn
the mapping from keys to data positions by fitting the Cu-
mulative Distribution Function (CDF) of the input data se-
quence [27]. As illustrated in Figure 2(a), given a target key,
learned indexes first leverage machine learning models to
predict its approximate position in the sorted data node, and
then locally search to locate the actual position. In general,
learned indexes adopt the linear regression algorithm (i.e.,
𝑝𝑜𝑠 = 𝑎∗𝑘𝑒𝑦+𝑏 where 𝑎 refers to the slope and𝑏 refers to the
intercept) to train machine learning models [11, 14, 37, 71].
However, this retraining scheme is inefficient due to its

offline batched training process. Specifically, during model

Table 1: Hardware Configuration of BlueField-2 [43].

Component Hardware Configuration

Cores 8× ARMv8 A72 processors (64-bit)

DRAM 16GB on-board DDR4-1600 DRAM

Network 1× Ethernet port 200Gb/s

PCIe 8× PCIe Gen 4.0

retrainings, learned indexes need to process the entire train-
ing data in a single batch, involving massive data accesses
to the memory device. Such repeated accesses would rapidly
exhaust memory bandwidth and lead to substantial I/O over-
heads. Moreover, due to severe data dependencies between
index operations and learned models, reads and writes are
completely blocked until new models are fully retrained [37].
Therefore, reducing model retraining overheads is a key chal-
lenge to improve the performance of learned indexes.

2.2 Data Process Unit
DPU is an off-path SmartNIC that is located out of the critical
path of data transmissions in the network, as depicted in Fig-
ure 2(b). By processing in-network packets bypassing CPUs
at a low cost, DPU can eliminate extra data movements in
the network, thus improving resource utilization and power
efficiency in HPC systems. In general, DPU is connected
to the CPU via the PCIe bus, allowing fast data exchange
through DMA. Besides, DPU runs in a full network stack
with a dedicated network interface. By leveraging NVIDIA
DOCA SDK tools [45], DPU can communicate with CPUs
through a secure and network-independent DOCA communi-
cation channel [44]. Moreover, DPU runs in a popular Linux,
making it easy for developers to deploy and develop applica-
tions. Therefore, applications based on DPUs can be easily
migrated across various DPUs with high portability.
The unique off-path architecture of DPU makes it effi-

cient for offloading and accelerating CPU-intensive tasks
[15, 16]. However, due to the limited onboard computing and
memory resources as listed in Table 1, DPU is insufficient
to handle heavy offloaded tasks [17]. Therefore, developers
need to carefully design a lightweight offloading scheme to
exploit the capabilities of DPUs. Besides, the hardware-level
isolation between the CPU and DPU enables the DPU to
remain alive and continue running during CPU-side system
crashes. Therefore, DPU can provide additional fault toler-
ance for CPUs and enhance the availability of DPU-driven
HPC architecture across system crashes.

2.3 Non-Volatile Memory
Byte-addressable NVM offers storage-like persistence and
DRAM-like performance, and can be easily integrated into

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

Model

Model Model

Model Model Model

CPU

PCIe
...

(DRAM)

(NVM)

Accelerator Nodes Data Blocks

DPU

Model
Layer

Block
Layer

Control Flow Data Flow

ΔModelModel

a’ = a + Δa
b’ = b + Δb

Figure 3: The structure of DALdex.
HPC systems without complicated configurations [19]. In
general, NVM is installed into a memory socket via the mem-
ory bus, allowing the CPU to directly access it with load/store
instructions. However, programming based on NVM is not
straightforward due to the following reasons. (1) Data in
the CPU cache is volatile and writes may be reordered by
CPUs. Therefore, developers need to explicitly flush (CLWB,
CLFLUSH, or CLFLUSHOPT) the CPU cacheline followed
by memory fence instructions (SFENCE or MFENCE) to en-
sure writes actually reach the NVM medium. (2) The data
access granularity in the CPU cache does not match the
NVMmedium. For example, Intel Optane DC PMEM accesses
data at the granularity of an XPLine (256B) in the 3DXPoint
medium. Therefore, small reads or writes in a CPU cache-
line (64B) would trigger a 4× amplification to the 3DXPoint
medium. This mismatch would rapidly saturate NVM band-
width during runtime and significantly decrease system per-
formance. Hence, it is necessary to design an NVM-friendly
index structure to minimize NVM amplifications.

3 DALdex Design
3.1 Overview
DALdex is a CPU-DPU hybrid persistent learned index with
high performance and availability. On the CPU side, DALdex
is decoupled into a DRAM-accelerated model layer and an
NVM-aware block layer to minimize NVM amplifications.
On the DPU side, DALdex offloads model retraining tasks
from the CPU based on the incremental learning scheme
to mitigate model retraining overheads. Moreover, DALdex
achieves seamless failover and instant recovery by leveraging
the hardware isolation feature of DPU. The overall structure
of DALdex is illustrated in Figure 3.

3.2 DALdex Structure
DRAM-Accelerated Model Layer. DALdex stores the model
structure in DRAM to eliminate model accesses on the crit-
ical path in NVM. Specifically, the model layer consists of
inner and accelerator nodes embedded with learned models.

Lock

DRAM Block Entry NVM Data Block

Min_key K
V

K
V

K
V

K
V

Entry Buffer Bitmap FPS

NextNum

Model B1 B5 B7 ...Header

Figure 4: The accelerator node structure of DALdex.
Similar to leaf nodes in traditional tree-based range indexes,
accelerator nodes reside at the bottom level of the model
layer, while key-value pairs are separately stored in NVM for
persistence. As the name implies, accelerator nodes target
to speed up reads and writes in DALdex by expediting both
model and data accesses during runtime.

Figure 4 details the accelerator node structure of DALdex.
The accelerator node comprises a metadata header and a
gapped array of block entries [11, 37]. The node header con-
tains model parameters (i.e., slope and intercept) and meta-
data in DRAM. Each slot in the gapped array is either a block
entry or a free slot reserved for future insertions. The block
entry holds a persistent pointer that points to a correspond-
ing data block in NVM. To further minimize NVM accesses
for data blocks, the block entry also maintains several block
metadata such as locks, bitmaps, and fingerprints in DRAM.
Similar to accelerator nodes, the inner node contains a meta-
data header embedded with model parameters, followed by
its child nodes (i.e., inner nodes or accelerator nodes).
NVM-Aware Block Layer. DALdex organizes key-value

pairs into NVM-aware data blocks with a fixed size to mini-
mize NVMamplifications. As illustrated in Figure 4, each data
block contains the number of keys, the minimum key, and
the next block pointer in its metadata to ensure crash consis-
tency. By default, the size of data blocks is configured as 256B
to match the access granularity of the XPLine in Intel Optane
DC PMEM. Note that the data blocks can be configured to
various sizes based on different characteristics of the storage
device deployed in the system. Besides, key-value pairs in
data blocks are unsorted to eliminate data movements during
insertions [69, 71]. To enable scans, data blocks are linked as
a singly linked list in NVM.With matched access granularity,
the NVM-aware block layer allows DALdex to restrict most
NVM accesses to a single data block for reads and writes.

3.3 DPU-Offloaded Incremental Learning
Reducing model retraining overheads is a key challenge for
learned indexes. Prolonged model retrainings would block
normal index operations and severely degrade the Quality of
Service (QoS) in HPC systems [5]. However, state-of-the-art
learned indexes fail to address this challenge due to the offline
batched model retraining scheme [11, 32, 34, 37, 54, 61, 71].

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Offloading model retraining tasks from the CPU to DPU
is a promising approach to address this challenge. How-
ever, naively offloading the offline batched model retraining
scheme to DPU is inefficient due to the limited onboard com-
puting and memory resources in DPUs [58]. As shown in
Figure 1(b), retraining a linear regression model with 100M
data on the DPU side consumes up to 22.6 seconds, which is
about 13.7× than on the CPU side. Such a straightforward
offloading scheme fails to yield performance gains since the
offloaded model retraining tasks on the DPU side become
a new bottleneck. This motivates us to revisit the model
retraining process and design a more efficient offloading
scheme for DPUs.

Through an in-depth analysis of the offline batched model
retraining scheme, we identify its inefficiency primarily stems
from the static nature of learned models, which fail to dy-
namically adapt to evolving data distributions. In learned
indexes, the static model is trained on a fixed dataset with an
established data distribution that always falls behind with
new data distributions. Therefore, learned indexes require
frequent model retrainings to learn new data distributions.
However, the offline batched retraining scheme adopts an
inefficient training pattern to learn new data distributions
from scratch. This not only ignores the knowledge (i.e., the
old data distributions) encoded in old models, but also wastes
valuable computing and memory resources.

However, we observe that new models can be incremen-
tally retrained with low overheads by updating old models
based on new data distributions. Inspired by this insight, we
propose an online incremental learning scheme to bridge the
gap between static learned models and evolving data distri-
butions [55, 73]. The core idea behind it is to incrementally
train new models by dynamically retraining old models based
on new data distributions.
Online Incremental Learning Scheme. Unlike existing

offline batched model retraining schemes, the online incre-
mental learning scheme is a dynamic approach that tracks
data distribution changes during runtime [40, 42]. To demon-
strate this, we decompose the offline batched model retrain-
ing scheme and extract common factors from it, denoted
as intermediate results {𝑆𝑘 , 𝑆𝑘𝑘 , 𝑆𝑝 , 𝑆𝑘𝑝 }, as detailed in Equa-
tions 1 and 2. Due to the equivalence of mathematical trans-
formations, the model parameters (i.e., slope 𝑎 and inter-
cept 𝑏) can be uniquely derived from the intermediate re-
sults {𝑆𝑘 , 𝑆𝑘𝑘 , 𝑆𝑝 , 𝑆𝑘𝑝 } without additional errors. Therefore,
by maintaining intermediate results during runtime, we can
dynamically retrain new models through several lightweight
floating-point operations. This approach effectively decou-
ples model parameters from extensive iterations over the
training data required in the offline batched model retraining
scheme, thereby significantly mitigating model retraining
overheads for learned indexes.

𝑎 =
𝑛
∑𝑛−1

0 𝑘𝑖𝑝𝑖 −
∑𝑛−1

0 𝑘𝑖
∑𝑛−1

0 𝑝𝑖

𝑛
∑𝑛−1

0 𝑘2
𝑖
− (∑𝑛−1

0 𝑘𝑖)2

𝑏 =

∑𝑛−1
0 𝑘2𝑖

∑𝑛−1
0 𝑝𝑖 −

∑𝑛−1
0 𝑘𝑖

∑𝑛−1
0 𝑘𝑖𝑝𝑖

𝑛
∑𝑛−1

0 𝑘2
𝑖
− (∑𝑛−1

0 𝑘𝑖)2

[41] (1)

𝑆𝑘𝑛 =
∑︁𝑛−1

0
𝑘𝑖 𝑆𝑘𝑘𝑛 =

∑︁𝑛−1
0

𝑘2𝑖

𝑆𝑝𝑛 =
∑︁𝑛−1

0
𝑝𝑖 𝑆𝑘𝑝𝑛 =

∑︁𝑛−1
0

𝑘𝑖𝑝𝑖

(2)

To efficiently fit new data distributions, we need to dynam-
ically update intermediate results {𝑆𝑘 , 𝑆𝑘𝑘 , 𝑆𝑝 , 𝑆𝑘𝑝 } during
runtime. Formally, suppose a model 𝐿𝑀𝑘 is trained based on
a data sequence {(𝑘0, 𝑝0), (𝑘1, 𝑝1), ..., (𝑘𝑛−1, 𝑝𝑛−1)}with inter-
mediate results {𝑆𝑘𝑛 , 𝑆𝑘𝑘𝑛 , 𝑆𝑝𝑛 , 𝑆𝑘𝑝𝑛 }, where 𝑘𝑖 denotes the
key and 𝑝𝑖 denotes its position. When a new data (𝑘𝑚, 𝑝𝑚)
is inserted into the data sequence (0 ≤ 𝑚 ≤ 𝑛), the in-
termediate results are updated from {𝑆𝑘𝑛 , 𝑆𝑘𝑘𝑛 , 𝑆𝑝𝑛 , 𝑆𝑘𝑝𝑛 } to
{𝑆𝑘𝑛+1 , 𝑆𝑘𝑘𝑛+1 , 𝑆𝑝𝑛+1 , 𝑆𝑘𝑝𝑛+1 }, as detailed in Equation 3. To en-
sure precision and avoid overflow, we allocate four double-
precision floating point numbers for intermediate results,
which only consume 32B space for each model.

𝑆𝑘𝑛+1 = 𝑆𝑘𝑛 + 𝑘𝑚 𝑆𝑘𝑘𝑛+1 = 𝑆𝑘𝑘𝑛 + 𝑘2𝑚
𝑆𝑝𝑛+1 = 𝑆𝑝𝑛 + 𝑛 𝑆𝑘𝑝𝑛+1 = 𝑆𝑘𝑝𝑛 + 𝑘𝑚𝑝𝑚 + 𝑆𝑘𝑛 − 𝑆𝑘𝑚

(3)

Once new intermediate results {𝑆𝑘𝑛+1 , 𝑆𝑘𝑘𝑛+1 , 𝑆𝑝𝑛+1 , 𝑆𝑘𝑝𝑛+1 }
are calculated, we can incrementally train a new model
𝐿𝑀𝑘+1 on top of the old model 𝐿𝑀𝑘 , as detailed in Equa-
tion 4. Note that the online incremental learning scheme is
mathematically equivalent to the offline batched retraining
scheme, both of which converge to the optimal solution with
a closed form [27].

𝑎𝑛𝑒𝑤 =
(𝑛 + 1)𝑆𝑘𝑝𝑛+1 − 𝑆𝑘𝑛+1𝑆𝑝𝑛+1
(𝑛 + 1)𝑆𝑘𝑘𝑛+1 − (𝑆𝑘𝑛+1)2

𝑏𝑛𝑒𝑤 =
𝑆𝑘𝑘𝑛+1𝑆𝑝𝑛+1 − 𝑆𝑘𝑛+1𝑆𝑘𝑝𝑛+1
(𝑛 + 1)𝑆𝑘𝑘𝑛+1 − (𝑆𝑘𝑛+1)2

(4)

DPU-Offloaded Incremental Learning Scheme. Simply
employing the online incremental learning scheme on the
CPU side is still inefficient, since it remains on the critical
path of DALdex operations, as depicted in Figure 5(a). To
further remove model retrainings from the critical path, we
offload the incremental learning scheme to the DPU side.
As depicted in Figure 5(b), the offloaded incremental learn-
ing tasks on the DPU side overlap with DALdex operations
on the CPU side, which further improves the overall per-
formance of DALdex. Unlike naively offloading the offline
batched model retraining scheme, offloading the incremental
learning scheme to DPU is much more efficient with several
lightweight floating-point operations (Equation 4), which
consumes negligible DPU cycles.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

However, eagerly offloading the online incremental learn-
ing scheme to the DPU side without proper synchronizations
may lead to lost updates across system crashes. To resolve
this problem, a naive approach is to employ locks to en-
sure strong synchronizations between the CPU and DPU for
each model update. However, this would significantly block
normal index operations on the CPU side due to the huge
performance gap between the CPU and DPU. To address this
challenge at a low cost, we further offload themodel structure
of DALdex apart from intermediate results to the DPU side
for incremental learning. New models are asynchronously
retrained and updated on the DPU side bypassing the CPU
to maximize the parallelism of DALdex. When model retrain-
ings are triggered on the CPU side, DALdex then notifies the
DPU and fetches new model parameters from the DPU to
CPU through the DOCA communication channel to ensure
crash consistency [44].

3.4 DPU-Extended Failover
The CPU-DPU hybrid structure dramatically enhances the
availability of DALdex across system crashes. Specifically,
in the event of DPU-side system crashes, DALdex on the
CPU side remains unaffected, since DALdex can locally re-
train newmodels without DPUs. Moreover, when the system
crashes on the CPU side, the DPU subsystem remains alive
due to the hardware-level isolation between the CPU and
DPU. In this scenario, DALdex can be entirely offloaded to
the DPU side without interruptions.
As mentioned previously, to enable efficient incremen-

tal learning, the model structure of DALdex is offloaded to
the DPU side, which is a natural backup of the CPU side.
Therefore, by promoting the offloaded model structure to
the primary structure, DALdex can be entirely offloaded to
the DPU side without inconsistencies. Similar to redo logs,
the offloaded model structure retains new model updates,
since new models are first incrementally trained on the DPU
side. This enables DALdex to achieve seamless failover by
consistently migrating to the DPU side during CPU-side sys-
tem crashes. However, since key-value pairs are persisted in
NVM on the CPU side, the offloaded DALdex on the DPU
side needs to access them through DMA via the PCIe bus.
In addition, simultaneous system crashes on both CPU

and DPU sides typically imply catastrophic failures (e.g.,
hardware damages), which are extremely rare in practice. In
such scenarios, DALdex needs to rebuild the model structure
from scratch after system-level emergency repairs.

3.5 DPU-Assisted Instant Recovery
When the system restores, DALdex can either migrate to
the CPU side or proceed on the DPU side. However, due to
the limited onboard computing and memory resources in
DPUs, the performance of DALdex on the DPU side is much

Wait

Incremental learningSearch Shift Insert

(a) Online Incremental Learning

(b) Offloaded Incremental Learning

CPU

CPU

DPU Incremental learning

Search Shift Insert

Figure 5: DPU-offloaded incremental learning scheme.

lower than on the CPU side. Therefore, for performance
considerations, DALdex prioritizes recovery to the CPU side
upon restorations. During recovery, unlike APEX and PLIN
that need to rebuild partial index structures or redo heavy
NVM logs [37, 71], DALdex can be instantly recovered by
retrieving the offloaded model structure from the DPU to
CPU through DMA via the PCIe bus. Compared to naively
rebuilding the model structure on the CPU side, the DMA-
based scheme achieves minimal recovery overheads due to
the space-efficient model structure in DALdex. Besides, once
the DMA task is finished, DALdex reverts to a consistent
state without performance degradation, since the offloaded
model structure keeps up-to-date during failover.

4 Implementation
4.1 Index Operations
Search & Scan. Searching for a target key-value pair starts
in the model layer in DRAM. First,DALdex (1) searches at the
root node and traverses in the inner nodes using embedded
models until reaching the accelerator node. Then DALdex
(2) searches within the accelerator node from the predicted
position to locate the target block entry. If the predicted slot
does not contain the target block entry due to prediction
errors, DALdex needs to exponentially search the following
slots, until reaching the actual slot (i.e., the last slot that is
smaller than the target key). To ensure ordered exponential
searches, free slots in the accelerator node are assigned with
a free flag that is the maximum key in the numerical range.
After locating the target block entry, DALdex (3) checks the
bitmaps and fingerprints in the block entry in DRAM, and
then linearly searches within the corresponding data block in
NVM to find the target key-value pair. If the target key-value
pair is not found, DALdex (4) proceeds to search the next
data block in the singly linked list. For scans, DALdex fur-
ther searches through subsequent data blocks until sufficient
records are collected.
However, accessing the data block in NVM for the first

time typically results in a cachemiss due to separated address
spaces in DRAM and NVM. To mitigate this problem, we
maintain a data buffer in DRAM as a primary cache for the
corresponding data block in NVM. Therefore, DALdex first
searches in the data buffer if it hits, and then searches in the
data block if the data buffer misses.

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

B1 B5 B7 ...

Model
①

(DRAM)

Insert <K5,V5>

Gapped
Array

Model
Layer

K1 K3 K2

V1 V3 V2

K5

V5

K7 K9 K8

V7 V9 V8Block
Layer

(NVM)

②

③

④

Figure 6: The insertion process of DALdex.

Insert. Similar to searching, inserting a new key-value
pair starts by searching for the corresponding block entry
in the model layer in DRAM. After locating the target data
block in NVM, DALdex linearly searches within the data
block to find a deleted or free slot for insertion, since key-
value pairs in data blocks are unsorted. To ensure crash
consistency, DALdex first inserts the value and then inserts
the key followed by flush and fence instructions [37, 69,
71]. Once the key is persisted, the new insertion remains
consistent across system crashes [69, 71]. Finally, DALdex
updates the associated metadata in DRAM.
However, if the target data block is full, instead of split-

ting it into two child blocks, DALdex allocates a new data
block, inserts the new key-value pair into it, and links the
new data block into the singly linked list to eliminate expen-
sive data movements in NVM. This does not introduce extra
memory overheads since the size of data blocks is accurately
configured to match the access granularity in NVM. Then
DALdex inserts the new block entry into the accelerator
node based on the model prediction. However, if the pre-
dicted position is already occupied, DALdex needs to locate
the nearest free slot, and sequentially shift occupied slots to
make space for the new insertion. Finally, DALdex in-place
inserts the new block entry into the free slot to ensure sorted
order in the accelerator node. For example, as depicted in
Figure 6, when inserting a new key-value pair < 𝐾5,𝑉5 >,
DALdex ❶ searches within the accelerator node to find the
target data block 𝐵1 with the key 𝐾1 smaller than 𝐾5, and
❷ tries to insert < 𝐾5,𝑉5 > into 𝐵1. However, the insertion
fails since 𝐵1 is already full. Then DALdex ❸ allocates a new
data block 𝐵5, inserts < 𝐾5,𝑉5 > into 𝐵5, and links 𝐵5 into
the singly linked list. Next, DALdex attempts to insert 𝐵5
into the accelerator node at position 1 based on the model
prediction. However, since the predicted position 1 is already
occupied by 𝐵7, DALdex needs to locate the nearest free slot
at position 2, and ❹ shifts 𝐵7 from position 1 to 2 to make
space for 𝐵5. Finally, DALdex inserts 𝐵5 at position 1 in the
accelerator node.

ΔModel
Comm Channel

<K5,P5>
DPU

<Δa,Δb>

②

B1 B5 B7 ...

Model
①

CPU

Insert <K5,V5>

a’ = a + Δa
b’ = b + Δb③④

⑤

Update <K5,P5>

Figure 7: The incremental learning process of DALdex.

Model ΔModel
DPU

PCIe
CPU DMA

Figure 8: The recovery process of DALdex.

Structural Modification Operations. When an accel-
erator node fills up with new insertions, DALdex needs to
either expand or split it to accommodate more data [11, 37].
To determine which mechanism to apply, DALdex employs
a lightweight decision scheme based on the model accuracy.
Specifically, DALdex checks the Root Mean Square Error
(RMSE, which can be easily derived from intermediate re-
sults) of the incremental model on the DPU side. If the RMSE
does not exceed a predefined threshold, demonstrating the
model accuracy is sufficient,DALdex expands the accelerator
node at a low cost. Otherwise, it implies that a single model
would underfit the data distribution, since the training data
size exceeds the expressivity of a linear regression model. In
this scenario, DALdex splits the accelerator node to reduce
the training data size for each model.
For accelerator node expands, DALdex (1) fetches the in-

cremental model from the DPU to CPU as a new model, (2)
allocates a larger accelerator node, (3) inserts block entries
from the old node to the new node based on new model
predictions, and (4) updates the corresponding node point-
ers. For accelerator node splits, DALdex even splits it into
two child nodes and locally retrains two models based on
the partitioned data in each child node. Subsequently, the
new child node is inserted into its parent node with possi-
ble cascade splits. To avoid frequently splitting inner nodes,
DALdex adopts an opportunistic insertion strategy as PLIN
[71], which ensures that the child node is inserted into its
parent node only if there are free slots available. Otherwise,
the child node is not inserted and becomes an orphan node
linked to its left sibling node. However, if the number of
orphan nodes exceeds a predefined threshold, DALdex needs
to rebuild all inner nodes to merge orphan nodes into their
parent nodes for performance.
Delete & Update. Deleting an existing key-value pair in

DALdex is implemented by invalidating the target key with a
free flag. For updates,DALdex in-place modifies the old value
with the new value atomically. Different from insertions,
deletions and updates do not pollute actual key distributions
or learned models [60]. Therefore, DALdex do not retrain
new models in these scenarios.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

Offloaded Incremental Learning. DPU offloads incre-
mental learning by processing requests from the CPU side.
Specifically, DPU dynamically updates intermediate results
based on new insertions during runtime (Equation 3). When
model retrainings are triggered on the CPU side during
SMOs, DALdex sends an incremental learning request from
the CPU to DPU for model retrainings. Once receiving the
request, DPU incrementally retrains a new model on top
of intermediate results (Equation 4). Then DPU sends new
model parameters back to the CPU through the DOCA com-
munication channel. For example, as illustrated in Figure 7,
during insertions,DALdex❶ inserts a new data block 𝐵5 into
the accelerator node, and ❷ sends the new key as well as its
position < 𝐾5, 𝑃5 > from the CPU to DPU through the DOCA
communication channel. Then DPU updates intermediate
results based on < 𝐾5, 𝑃5 > to learn new data distributions.
Once DPU receives the incremental learning request from
the CPU, it ❸ incrementally retrains a new model based on
the intermediate results, and ❹ sends new model parameters
back to the CPU through the DOCA communication channel.
Finally, DALdex ❺ in-place updates the old model using new
model parameters on the CPU side.
To enable efficient incremental learning, DPU needs to

dynamically update intermediate results to capture new data
distributions during runtime. However, updating 𝑆𝑘𝑝 is ineffi-
cient since it involves additional prefix sums (i.e., 𝑆𝑘𝑚 in Equa-
tion 3), which incurs substantial computing and memory
overheads on the DPU side. To mitigate this issue, DALdex
does not update prefix sums during insertions and approxi-
mately computes 𝑆𝑘𝑝 on the DPU side. This approximation
significantly reduces the incremental learning latency and
further improves the overall performance of DALdex at the
cost of minimal retraining errors. However, this trade-off is
necessary due to the limited onboard computing andmemory
resources in DPUs.

4.2 Bulk Load
Similar to state-of-the-art learned indexes [13, 71], DALdex
is constructed recursively from the bottom up using the
OptimalPLR algorithm [53]. During the bulk load process,
we first use the OptimalPLR algorithm to partition the in-
put data sequence into multiple segments, and organize the
partitioned data into fixed-size data blocks in NVM. Then
we build accelerator nodes in DRAM on top of data blocks
and recursively build inner nodes until reaching the root
node. Compared to the top-down structure that has to prop-
agate model updates upwards to the root node during SMOs
[53, 60], the bottom-up structure in DALdex offers more flex-
ibility to independently update the model structure in each
level. Therefore, DALdex significantly reduces the model
dependency in the index structure and thus achieves better
scalability in concurrent scenarios.

4.3 Concurrency
DALdex utilizes the popular optimistic locking scheme in
both accelerator nodes and data blocks to offer high concur-
rency [32, 37, 54, 71]. Readers only need to check the lock
version without acquiring it, but need to retry reading if the
lock version changes during reads. However, writers need to
exclusively acquire the lock and increment the lock version
by one if the write succeeds. To minimize lock contentions,
DALdex employs a fine-grained concurrency control scheme
that decouples the locking of model structure in DRAM from
data blocks in NVM. Therefore, DALdex allows more reads
and writes to be performed asynchronously in DRAM and
NVM. Moreover, DALdex offloads expensive model retrain-
ings from the CPU to DPU, which significantly narrows the
critical section in writes and thus achieves high concurrency
in concurrent scenarios.

5 Performance Evaluation
5.1 Experimental Setup
We conduct experiments on a Linux server (Ubuntu 18.04 LTS
with kernel 5.4.0) equipped with two Intel Xeon Gold 6230R
CPUs. Each CPU has 26 cores with 32KB L1D cache, 32KB
L1I cache, 1MB L2 cache, and 35.75MB L3 cache. The system
is equipped with 384GB DRAM, 768GB NVM (6×128 GB Intel
Optane DC PMEM on the AppDirect mode), and an NVIDIA
Mellanox BlueField-2 MT42822 DPU on the DPU mode with
DOCA 2.6.0. The hardware configuration of BlueField-2 DPU
is listed in Table 1.

Datasets. We select three real-world datasets: the Books,
Genome, and OSM datasets for evaluation [25, 60]. The
Books dataset is a set of Amazon book sales rank data [2],
the Genome dataset contains autosomal and sex chromo-
some sequences from the human genome [48], and the OSM
dataset is a one-dimensional projection of uniformly sam-
pled multi-dimensional locations from OpenStreetMap [47].
Each dataset consists of 200M unique key-value pairs, where
both keys and values are 8B integers. Among these datasets,
the OSM dataset exhibits a complex data distribution, mak-
ing it the most challenging dataset for model retraining and
inference [60].

Competitors.We compare DALdexwith five state-of-the-
art persistent learned indexes and tree-based range indexes,
including APEX [37], PLIN [71], TLBTree [38], ROART [39]
and PACTree [24]. Among these persistent indexes, APEX is
a DRAM-NVM hybrid persistent learned index that stores
partial metadata in DRAM to improve performance. PLIN is
an NVM-only persistent learned index that stores all com-
ponents in NVM to achieve instant recovery. TLBTree is
an NVM-only B+tree-style persistent range index that di-
vides the index into a read-optimized top layer and a write-
optimized bottom layer to trade off between read and write

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 20
2 0
4 0
6 0
8 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
(a) R e a d - o n l y (b) W r i t e - o n l y (c) R e a d - i n t e n s i v e (d) W r i t e - i n t e n s i v e

 D A L d e x D A L d e x - C P U A P E X P L I N R O A R T P A C T r e e T L B t r e e

1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2
0
5

1 0
1 5
2 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2

0

2 0

4 0

6 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2

0
5

1 0
1 5
2 0
2 5

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s

Figure 9: Throughputs on the Books dataset.

1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 20
2 0
4 0
6 0
8 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
(a) R e a d - o n l y (b) W r i t e - o n l y (c) R e a d - i n t e n s i v e (d) W r i t e - i n t e n s i v e

 D A L d e x D A L d e x - C P U A P E X P L I N R O A R T P A C T r e e T L B t r e e

1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2
0
5

1 0
1 5
2 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2

0

2 0

4 0

6 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2

0
5

1 0
1 5
2 0
2 5

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s

Figure 10: Throughputs on the Genome dataset.

1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2
0

2 0

4 0

6 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
(a) R e a d - o n l y (b) W r i t e - o n l y (c) R e a d - i n t e n s i v e (d) W r i t e - i n t e n s i v e

 D A L d e x D A L d e x - C P U A P E X P L I N R O A R T P A C T r e e T L B t r e e

1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2
0
5

1 0
1 5
2 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2

0
1 0
2 0
3 0
4 0
5 0

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s
1 6 1 2 1 8 2 4 3 0 3 6 4 2 4 8 5 2

0
5

1 0
1 5
2 0
2 5

Th
rou

gh
pu

t (M
op

s/s
)

N u m b e r o f T h r e a d s

Figure 11: Throughputs on the OSM dataset.
performance. PACTree and ROART are two NVM-only trie-
style persistent range indexes built based on the Adaptive
Radix Tree (ART) [31]. The implementations of all persistent
indexes are available on GitHub and we directly use their
open-source codes with recommended parameters in their
original papers for comparisons. However, these persistent
indexes are designed for CPUs and unaware of DPUs. There-
fore, it is challenging to implement CPU-DPU hybrid variants
for them. To ensure fairness, we also include a CPU-oriented
DALdex (i.e., DALdex-CPU) for comparison to comprehen-
sively exhibit the benefits of our proposed design.

5.2 Overall Performance
In this experiment, we evaluate the performance of all per-
sistent indexes on read-only, write-only, read-intensive (80%
read and 20% write), and write-intensive (20% read and 80%
write) workloads. All read and write operations follow a
uniform distribution. The number of threads scales from 1
to 52 with hyper-threading over 26 threads. To eliminate
the NUMA effect, we bind each thread to different physical

cores within a single socket under 26 threads. For all con-
figurations, DALdex exhibits higher performance than other
indexes, especially on complex datasets with more threads.
Figures (9-11)(a) show the performance on the read-only

workload. DALdex scales almost linearly for reads and out-
performs other persistent indexes by 1.07-6.34× under 52
threads. The main reason comes from the minimized NVM
accesses and fine-grained concurrency control enabled by
the decoupled index structure in DALdex. Specifically, both
APEX and PLIN require at least two NVM accesses for reads.
One is for accessing the learned model in the node header,
and the other is for retrieving the target key-value pair in the
data node. In comparison, DALdex requires only one NVM
access for retrieving the target key-value pair in the NVM-
friendly data block. This is because learnedmodels inDALdex
are maintained in DRAM to eliminate NVM accesses on the
critical path. However, the read performance of DALdex
shows marginal benefits and falls short of APEX with fewer
threads, sinceDALdex needs to locally search within internal
nodes due to prediction errors introduced by the OptimalPLR
algorithm [13]. While APEX avoids internal searches since

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 90
2 0
4 0
6 0
8 0

1 0 0

Th
rou

gh
pu

t (M
op

s/s
)

Z i p f t h e t a
(a) R e a d - o n l y (b) W r i t e - o n l y (c) R e a d - i n t e n s i v e (d) W r i t e - i n t e n s i v e

 D A L d e x D A L d e x - C P U A P E X P L I N R O A R T P A C T r e e T L B T r e e

0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 90
5

1 0
1 5
2 0

Th
rou

gh
pu

t (M
op

s/s
)

Z i p f t h e t a
0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 90

2 0
4 0
6 0
8 0

Th
rou

gh
pu

t (M
op

s/s
)

Z i p f t h e t a
0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 90

5
1 0
1 5
2 0
2 5

Th
rou

gh
pu

t (M
op

s/s
)

Z i p f t h e t a

Figure 12: Throughputs under Zipfian distribution across various skewness (Genome dataset, 52 threads).

256 512 1024 4096
0

1

2

Th
ro
ug
hp
ut
(M
op
s/
s)

Block Size (B)
(a) Search

256 512 1024 4096
0

10

20

Th
ro
ug
hp
ut
(M
op
s/
s)

Block Size (B)
(b) Insert

Figure 13: Impact of block size.

r a w + D R A M + I L + D P U0

1

2

Th
rou

gh
pu

t (M
op

s/s
)

D e s i g n C h o i c e
(a) S e a r c h (b) I n s e r t

r a w + D R A M + I L + D P U0
5

1 0
1 5
2 0

Th
rou

gh
pu

t (M
op

s/s
)

D e s i g n C h o i c e

Figure 14: Factor analysis (IL: Incremental Learning).

inner node predictions are accurate due to its top-down struc-
ture [11, 37]. However, as the number of threads increases,
DALdex eventually surpasses APEX in reads and exhibits
better scalability than APEX due to the fine-grained concur-
rency control. Besides, DALdex-CPU performs nearly the
same as DALdex since there are few model retrainings in
read-only and read-intensive workloads. Therefore, DALdex
gains limited performance benefits from the DPU-offloaded
scheme in these scenarios. The non-learned indexes, TLB-
Tree, ROART and PACTree, exhibit much lower performance
than learned indexes due to massive NVM accesses in inter-
nal tree structures without using learned models.

Figures (9-11)(b) show the performance on the write-only
workload. DALdex outperforms other persistent indexes by
1.36-3.31× under 52 threads. In the Books dataset, there
are few model retrainings during insertions since the data
distribution is simple. Therefore, DALdex obtains limited
performance improvements from the offloaded incremental
learning scheme. However, DALdex still achieves the highest
write performance among other persistent indexes since the
NVM-friendly index structure significantly minimizes write
amplifications in NVM. Besides, the unsorted key-value pairs
in data blocks avoid extensive data movements during inser-
tions, which further reduces NVM writes and saves NVM
bandwidth. In Genome and OSM datasets, the write per-
formance of APEX and PLIN is significantly constrained by
frequent model retrainings due to complex data distributions.
Unlike them,DALdex achieves the best write performance by
mitigating model retraining overheads through the offloaded
incremental learning scheme on the DPU side. Similarly,
DALdex outperforms DALdex-CPU by 1.12-1.58× under 52
threads, with higher performance improvements on more

complex datasets. The non-learned indexes exhibit consis-
tently low performance across all datasets, since they are
unaware of different data distribution patterns.
Figures (9-11)(c) and (d) show the performance on the

read-intensive and write-intensive workloads. DALdex out-
performs other persistent indexes by 1.13-5.46× and 1.65-
3.12× under 52 threads, respectively. In the read-intensive
workload,DALdex allowsmore reads without locks in DRAM
due to the optimistic concurrency control in the decoupled
index structure. In the write-intensive workload, DALdex
significantly mitigates model retraining overheads and min-
imizes lock contentions in writes, thus achieving the best
performance with high concurrency.

5.3 Performance of Varying Access Patterns
In this experiment, we evaluate the performance of all per-
sistent indexes under the Zipfan distribution across various
skewness. Figure 12 shows the evaluation results on the
Genome dataset with 52 threads. Compared to Figure 10, all
indexes achieve higher read performance with higher skew-
ness, since more reads focus on a small set of hot keys in
the CPU cache rather than NVM. However, the write per-
formance achieves minimal improvements since writes are
eventually flushed from the CPU cache to NVM. DALdex
outperforms other persistent indexes under all skewness, ex-
hibiting robust performance under diverse access patterns.

5.4 Effects of Each Design
In this experiment, we study the impact of different data
block sizes on the overall performance and analyze the effect
of each design choice in DALdex.

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

B o o k s G e n o m e O S M0
1
2
3

Co
ns

um
pti

on
 (G

B)

D a t a s e t s
(a) D R A M C o n s u m p t i o n (b) N V M C o n s u m p t i o n

B o o k s G e n o m e O S M0
2
4
6
8

Co
ns

um
pti

on
 (G

B)
D a t a s e t s

 D A L d e x A P E X P L I N

Figure 15: Memory consumption of DRAM and NVM.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 0

0 . 5

1 . 0

1 . 5

Th
rou

gh
pu

t (M
op

s/s
)

T i m e (s e c)

 D A L d e x A P E X P L I N

Figure 16: Single-thread re-
covery performance.

S e a r c h I n s e r t0
2 0
4 0
6 0
8 0

Th
rou

gh
pu

t (K
op

s/s
)

R e d i s b e n c h m a r k

 D A L d e x A P E X P L I N

Figure 17: Redis benchmark
performance.

Block Size. The data block size in DALdex is configurable
to adapt to different characteristics of the storage device em-
ployed in the system. In this experiment, we assign different
data block sizes to evaluate the impact on the overall per-
formance. As shown in Figure 13(a), the read performance
of DALdex on a single thread keeps dropping as the data
block size increases, since larger data blocks incur more local
searches in NVM. Similarly, as shown in Figure 13(b), the
write performance of DALdex on 52 threads continues to de-
crease due tomore block-level lock contentions in concurrent
scenarios. Therefore, we set the data block size as 256B by
default, achieving both the best read and write performance
among other alternative sizes.
Factor Analysis. To demonstrate the effect of each de-

sign choice in DALdex, we conduct a factor analysis on
DALdex. We first implement a baseline DALdex by main-
taining all components of DALdex in NVM and retraining
learned models based on the offline batched model retraining
scheme. Then we gradually incorporate each design choice
into the baseline implementation and evaluate the perfor-
mance of DALdex on the OSM dataset. As shown in Figure
14(a), by building DRAM-accelerated learned model struc-
ture, DALdex achieves 2.31× speedup in reads on a single
thread compared to the baseline implementation. However,
the read performance of DALdex cannot further benefit from
our proposed DPU-offloaded incremental learning scheme,
since there is no model retraining in the read-only work-
load. As shown in Figure 14(b), DALdex achieves 1.61-3.26×
speedup in writes on 52 threads compared to the baseline im-
plementation, demonstrating the effectiveness of each design
choice in DALdex.

Table 2: Runtime statistics of intermediate results.

Datasets Number of
Learned Models

Size of
Intermediate Results

Books 1691 52.84 KB
Genome 9987 312.09 KB
OSM 41281 1.26 MB

5.5 Memory Consumption
In this experiment, we measure the end-to-end DRAM and
NVM consumption of each learned index on various datasets
by monitoring DRAM and NVM allocators during runtime.
First, we initialize each learned index with 100M data fol-
lowed by inserting another 100M data on the write-only
workload, and then collect DRAM and NVM consumption of
each index for comparison. As depicted in Figure 15, DALdex
reduces DRAM consumption by 58.9-123.7% compared to
APEX on different datasets, since APEX needs to maintain
auxiliary fanout trees and cost models during runtime. How-
ever, DALdex only maintains the space-efficient model struc-
ture in DRAM, which incurs minimal DRAM overheads. In
comparison, PLIN does not consume DRAM at all due to its
NVM-only structure. Besides, DALdex reduces NVM con-
sumption by 18.9-43.4% compared to APEX and PLIN on var-
ious datasets, since NVM-friendly data blocks with matched
access granularity effectively reduce NVM fragmentation
in DALdex. We also measure the runtime statistics of inter-
mediate results on the DPU side, as shown in Table 2. The
intermediate results incur negligible DRAM overheads on
the DPU side due to the flat index structure in DALdex.

5.6 Recovery Performance
In this experiment, we evaluate the recovery performance
of each persistent learned index on the OSM dataset. We
first initialize each index with 100M data followed by insert-
ing another 100M data on the write-only workload. During
insertions, we randomly crash the system on the CPU side
following the methodology in LineFS [22]. Then we evalu-
ate the recovery performance of each index upon system
restores. Figure 16 shows the recovery performance of each
persistent learned index on a single thread. DALdex exhibits
faster recovery than APEX since APEX adopts a lazy recov-
ery scheme that rebuilds DRAM metadata during runtime.
Therefore, the initial recovery performance of APEX is low
due to the lack of necessary DRAM metadata. However, the
recovery performance of DALdex falls short of PLIN, since
PLIN is an NVM-only persistent learned index that maintains
all components in NVM. Therefore, PLIN does not need to re-
build the model structure during recovery and thus achieves
the fastest recovery. In comparison, DALdex only requires
lightweight DMA read requests to fully recover the model

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

structure on the CPU side. However, the current DMA-based
recovery scheme still incurs nearly 0.5s latency limited by
the PCIe bandwidth in our system. We estimate that the
emerging CXL (Compute Express Link) technique [10, 67]
with higher PCIe bandwidth and faster DMA transfer rate
could further improve the recovery performance of DALdex.

5.7 Real-World Applications
To evaluate the performance of each persistent learned index
in real-world applications, we leverage a modified version
of Redis to support multi-thread execution and replace the
hash index in Redis with each learned index for evaluation
[49]. Since learned indexes do not support inserting data into
an empty index, we first bulk load each learned index with
1000K randomkeys in a batch, and then use Redis-benchmark
to Get or Set 1000K random keys for evaluation. For fairness,
the keys are 8B random integers as in the micro benchmarks.
As shown in Figure 17, DALdex achieves 1.03-1.05× higher
read performance and 1.32-1.40× higher write performance
than APEX and PLIN in the Redis benchmark, demonstrating
the efficiency of DALdex in real-world applications.

6 Discussion
CPU-Oriented Scheme vs. DPU-Offloaded Scheme.DALdex
leverages the DPU-offloaded scheme to remove model re-
trainings from the critical path for performance and en-
sure crash consistency through hardware-level isolation.
However, the CPU-oriented scheme is crash-unsafe with-
out the fault-tolerance support provided by DPU. To avoid
this, DALdex-CPU has to write NVM logs for each model up-
date during runtime, which incurs excessive NVM accesses
and significantly decreases system performance. Therefore,
we design to offload incremental learning to DPU, thus en-
hancing the performance and availability of DALdex.

Cross-NVM Compatibility. DALdex is built based on In-
tel Optane DC PMEM as a case study since it is the only
commercially available NVM. Unfortunately, for some oper-
ational and business reasons, Intel announced to discontinue
the Optane DC Persistent Memory business in July 2022 [35].
However, the design choices of DALdex can easily migrate to
other types of NVMs if they exhibit similar mismatched ac-
cess granularity between the CPU cache and NVM medium.
In practice, with several parameter adjustments (i.e., the
NVM-aware data block size), DALdex can also be extended
to other NVMs with minimized NVM amplifications.

7 Related Work
SmartNIC Offloads. SmartNICs are specialized to offload
compute-intensive tasks from CPUs. LineFS [22] offloads
NVM-based distributed file system operations to SmartNICs
to improve performance and availability. PMNet [51] of-
floads the data plane to SmartNICs equipped with NVM to

extend the persistence domain from servers to the network.
Xenic [50] offloads transaction processes to SmartNICs to
improve the efficiency of distributed transactions. Different
from these schemes, DALdex targets persistent learned in-
dexes and offloads model retrainings to DPUs based on the
incremental learning scheme.
Learned Indexes. RMI (Recursive Model Index) is the

first learned index leveraging machine learning models [27].
However, RMI is a static learned index and does not support
insertions during runtime. ALEX [11] proposes a gapped ar-
ray structure to reserve free slots in data nodes for future
insertions. FITing-Tree [14] proposes a delta buffer structure
apart from data nodes for insertions. PGM-index [13], LIPP
[61],DILI [34] and RadixSpline [26] mainly focus on optimiz-
ing model structures during the bulk load process. However,
they still employ expensive offline batched model retrain-
ing schemes during runtime. Unlike them, DALdex mainly
focuses on optimizing model retrainings by offloading the
incremental learning scheme to DPU.
Persistent Indexes. Persistent indexes have been widely

studied over the last decade, even before the first commercial
Intel Optane DC PMEM was available. uTree [8] decouples
B+Tree leaf nodes into an array layer and a list layer to
reduce the tail latency of SMOs. LB+Tree [36] introduces
a 3DXPoint-aligned node structure to reduce NVM writes
during insertions. DPTree [74] combines multiple writes in
DRAM and merges them into NVM in a batch to reduce per-
sistence overheads. Besides, there are also several automatic
persistent index conversion frameworks, such as RECIPE
[30] and Nap [56]. However, they target traditional tree-
based range indexes and hash indexes, which fail to work
for persistent learned indexes.

8 Conclusion
In this work, we propose DALdex, a CPU-DPU hybrid per-
sistent learned index with high performance and availabil-
ity. DALdex in-depth analyzes the bottleneck of existing
model retraining schemes and proposes an incremental learn-
ing scheme to mitigate model retraining overheads. Besides,
DALdex exploits the hardware characteristics of DPU to of-
fload model retrainings and achieves instant recovery via the
PCIe bus. Moreover, DALdex designs an NVM-friendly index
structure to optimize the access pattern for learned models
on the critical path. The evaluation results demonstrate that
DALdex significantly outperforms state-of-the-art persistent
indexes with minimal DRAM and NVM overheads.

Acknowledgments
This work was supported in part by National Natural Science
Foundation of China (NSFC) under Grant No. 62125202 and
U22B2022. We are grateful to anonymous reviewers for their
constructive suggestions and feedback.

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

References
[1] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access

memory (ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010),
2237–2251.

[2] Amazon. 2024. Amazon sales rank data for print and kindle
books. https://www.kaggle.com/datasets/ucffool/amazon-sales-rank-
data-for-print-and-kindle-books.

[3] Dmytro Apalkov, Alexey Khvalkovskiy, StevenWatts, Vladimir Nikitin,
Xueti Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen,
Adrian Ong, Alexander Driskill-Smith, and Mohamad Krounbi. 2013.
Spin-transfer torque magnetic random access memory (STT-MRAM).
J. Emerg. Technol. Comput. Syst. 9, 2 (May 2013), 1–35.

[4] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. 2018. Bztree: a high-performance latch-free range index for
non-volatile memory. Proc. VLDB Endow. 11, 5 (Oct. 2018), 553–565.

[5] Quan Chen, Zhenning Wang, Jingwen Leng, Chao Li, Wenli Zheng,
and Minyi Guo. 2019. Avalon: towards QoS awareness and improved
utilization through multi-resource management in datacenters. In
Proceedings of the ACM International Conference on Supercomputing
(Phoenix, Arizona) (ICS ’19). Association for Computing Machinery,
New York, NY, USA, 272–283.

[6] Shimin Chen, Phillip B Gibbons, Suman Nath, et al. 2011. Rethinking
database algorithms for phase change memory. In Proceedings of the
5th Biennial Conference on Innovative Data Systems Research (CIDR ’21,
Vol. 11). 5th.

[7] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in non-volatile
main memory. Proc. VLDB Endow. 8, 7 (Feb. 2015), 786–797.

[8] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu.
2020. uTree: a persistent B+-tree with low tail latency. Proc. VLDB
Endow. 13, 12 (July 2020), 2634–2648.

[9] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu
Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value Storage En-
gine for Persistent Memory. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 1077–1091.

[10] Grigory Chirkov and David Wentzlaff. 2023. Seizing the Bandwidth
Scaling of On-Package Interconnect in a Post-Moore’s Law World. In
Proceedings of the 37th ACM International Conference on Supercomput-
ing (Orlando, FL, USA) (ICS ’23). Association for ComputingMachinery,
New York, NY, USA, 410–422.

[11] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,
Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,
Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An
Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 969–984.

[12] Bo Fang, Hassan Halawa, Karthik Pattabiraman, Matei Ripeanu, and
Sriram Krishnamoorthy. 2019. BonVoision: leveraging spatial data
smoothness for recovery frommemory soft errors. In Proceedings of the
ACM International Conference on Supercomputing (Phoenix, Arizona)
(ICS ’19). Association for Computing Machinery, New York, NY, USA,
484–496.

[13] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a
fully-dynamic compressed learned index with provable worst-case
bounds. Proc. VLDB Endow. 13, 8 (April 2020), 1162–1175.

[14] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca,
and Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In
Proceedings of the 2019 International Conference on Management of Data
(Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing

Machinery, New York, NY, USA, 1189–1206.
[15] Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan,

Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng. 2023.
Software-Hardware Co-design of Heterogeneous SmartNIC System
for Recommendation Models Inference and Training. In Proceedings of
the 37th ACM International Conference on Supercomputing (Orlando,
FL, USA) (ICS ’23). Association for Computing Machinery, New York,
NY, USA, 336–347.

[16] Pouya Haghi, Cheng Tan, Anqi Guo, Chunshu Wu, Dongfang Liu,
Ang Li, Anthony Skjellum, Tong Geng, and Martin Herbordt. 2024.
SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collec-
tives in HPC Applications. In Proceedings of the 38th ACM International
Conference on Supercomputing (Kyoto, Japan) (ICS ’24). Association for
Computing Machinery, New York, NY, USA, 413–425.

[17] Mert Hidayetoglu, Simon Garcia De Gonzalo, Elliott Slaughter, Yu Li,
Christopher Zimmer, Tekin Bicer, Bin Ren, William Gropp, Wen-Mei
Hwu, and Alex Aiken. 2024. CommBench: Micro-Benchmarking Hier-
archical Networks with Multi-GPU, Multi-NIC Nodes. In Proceedings
of the 38th ACM International Conference on Supercomputing (Kyoto,
Japan) (ICS ’24). Association for Computing Machinery, New York, NY,
USA, 426–436.

[18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
2018. Endurable transient inconsistency in byte-addressable persistent
B+-tree. In Proceedings of the 16th USENIX Conference on File and Stor-
age Technologies (Oakland, CA, USA) (FAST’18). USENIX Association,
USA, 187–200.

[19] Intel. 2024. Intel Optane Persistent Memory Overview.
https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/overview.html.

[20] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. 2021. WineFS: a hugepage-aware file system for persistent
memory that ages gracefully. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA,
804–818.

[21] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and
Young-Ri Choi. 2019. SLM-DB: single-level key-value store with per-
sistent memory. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies (Boston, MA, USA) (FAST’19). USENIX Asso-
ciation, USA, 191–204.

[22] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021.
LineFS: Efficient SmartNIC Offload of a Distributed File System with
Pipeline Parallelism. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 756–771.

[23] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young-ri
Choi, Alan Sussman, and BeomseokNam. 2022. ListDB: Union ofWrite-
Ahead Logs and Persistent SkipLists for Incremental Checkpointing
on Persistent Memory. In Proceedings of the 16th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’22). 161–177.

[24] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. 2021. PACTree: A High Performance Persistent
Range Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP ’21). Association for Computing Machinery, New York,
NY, USA, 424–439.

[25] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian,
Alfons Kemper, Tim Kraska, and Thomas Neumann. 2019. SOSD:
A Benchmark for Learned Indexes. NeurIPS Workshop on Machine
Learning for Systems (NeurIPS 19) (2019).

https://www.kaggle.com/datasets/ucffool/amazon-sales-rank-data-for-print-and-kindle-books
https://www.kaggle.com/datasets/ucffool/amazon-sales-rank-data-for-print-and-kindle-books
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Aoyang Tong and Yu Hua, et al.

[26] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Al-
fons Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline:
a single-pass learned index. In Proceedings of the Third International
Workshop on Exploiting Artificial Intelligence Techniques for Data Man-
agement (Portland, Oregon) (aiDM ’20). Association for Computing
Machinery, New York, NY, USA, Article 5, 5 pages.

[27] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The Case for Learned Index Structures. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA)
(SIGMOD ’18). Association for Computing Machinery, New York, NY,
USA, 489–504.

[28] R. Madhava Krishnan, Diyu Zhou, Wook-Hee Kim, Sudarsun Kannan,
Sanidhya Kashyap, and Changwoo Min. 2023. TENET: memory safe
and fault tolerant persistent transactional memory. In Proceedings of
the 21st USENIX Conference on File and Storage Technologies (Santa
Clara, CA, USA) (FAST’23). USENIX Association, USA, 247–264.

[29] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin
Ipek, Onur Mutlu, and Doug Burger. 2010. Phase-change technology
and the future of main memory. IEEE Micro 30, 1 (2010), 143–143.

[30] Se Kwon Lee, JayashreeMohan, Sanidhya Kashyap, Taesoo Kim, and Vi-
jay Chidambaram. 2019. Recipe: converting concurrent DRAM indexes
to persistent-memory indexes. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA,
462–477.

[31] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive
radix tree: ARTful indexing for main-memory databases. In Proceedings
of the 2013 IEEE International Conference on Data Engineering (ICDE
2013) (ICDE ’13). IEEE Computer Society, USA, 38–49.

[32] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: a fine-
grained learned index scheme for scalable and concurrent memory
systems. Proc. VLDB Endow. 15, 2 (Oct. 2021), 321–334.

[33] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng.
2023. ROLEX: a scalable RDMA-oriented learned key-value store for
disaggregated memory systems. In Proceedings of the 21st USENIX
Conference on File and Storage Technologies (Santa Clara, CA, USA)
(FAST’23). USENIX Association, USA, 99–114.

[34] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan.
2023. DILI: A Distribution-Driven Learned Index. Proc. VLDB Endow.
16, 9 (May 2023), 2212–2224.

[35] Tianxi Li, Yang Wang, and Xiaoyi Lu. 2023. On the Discontinuation of
Persistent Memory: Looking Back to Look Forward. InWorkshop on
Hot Topics in System Infrastructure June 18, 2023, Orlando, Florida, USA
Co-located with ISCA 2023.

[36] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+Trees: optimizing
persistent index performance on 3DXPoint memory. Proc. VLDB Endow.
13, 7 (March 2020), 1078–1090.

[37] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng
Wang. 2021. APEX: a high-performance learned index on persistent
memory. Proc. VLDB Endow. 15, 3 (Nov. 2021), 597–610.

[38] Yongping Luo, Peiquan Jin, Qinglin Zhang, and Bin Cheng. 2021. TLB-
tree: A Read/Write-Optimized Tree Index for Non-Volatile Memory.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 1889–1894.

[39] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu,
Hongbo Kang, and Yongwei Wu. 2021. ROART: Range-query Opti-
mized Persistent ART. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). 1–16.

[40] Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan
Nicolae. 2023. DStore: A Lightweight Scalable Learning Model Reposi-
tory with Fine-Grain Tensor-Level Access. In Proceedings of the 37th
ACM International Conference on Supercomputing (Orlando, FL, USA)

(ICS ’23). Association for Computing Machinery, New York, NY, USA,
133–143.

[41] Steven J Miller. 2006. The method of least squares. (2006), 1–12.
[42] Lin Ning andXipeng Shen. 2019. Deep reuse: streamline CNN inference

on the fly via coarse-grained computation reuse. In Proceedings of the
ACM International Conference on Supercomputing (Phoenix, Arizona)
(ICS ’19). Association for Computing Machinery, New York, NY, USA,
438–448.

[43] Nvidia. 2021. NVIDIA BLUEFIELD-2 DPU, Data Center Infrastructure
on a Chip. https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf.

[44] Nvidia. 2024. DOCA Comm Channel. https://docs.nvidia.com/doca/
archive/2-6-0/doca+comm+channel/index.html.

[45] Nvidia. 2024. DOCA Documentation v2.6.0. https://docs.nvidia.com/
doca/archive/doca-v2-6-0/index.html.

[46] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings of the
2016 International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 371–386.

[47] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
2018. How good are modern spatial analytics systems? Proc. VLDB
Endow. 11, 11 (July 2018), 1661–1673.

[48] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova,
Ivan D Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol,
Arina D Omer, Eric S Lander, et al. 2014. A 3D map of the human
genome at kilobase resolution reveals principles of chromatin looping.
Cell 159, 7 (2014), 1665–1680.

[49] Redis. 2024. Redis - The Real-time Data Platform. https://redis.io/.
[50] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind

Krishnamurthy. 2021. Xenic: SmartNIC-Accelerated Distributed Trans-
actions. In Proceedings of the ACM SIGOPS 28th Symposium on Operat-
ing Systems Principles (Virtual Event, Germany) (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 740–755.

[51] Korakit Seemakhupt, Sihang Liu, Yasas Senevirathne, Muhammad
Shahbaz, and Samira Khan. 2021. PMNet: in-network data persistence.
In Proceedings of the 48th Annual International Symposium on Computer
Architecture (Virtual Event, Spain) (ISCA ’21). IEEE Press, 804–817.

[52] Yongju Song, Wook-Hee Kim, Sumit Kumar Monga, Changwoo Min,
and Young Ik Eom. 2023. Prism: Optimizing Key-Value Store for Mod-
ern Heterogeneous Storage Devices. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS ’23). Association for Computing Machinery, New York, NY,
USA, 588–602.

[53] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index:
A Comprehensive Experimental Evaluation. Proc. VLDB Endow. 16, 8
(April 2023), 1992–2004.

[54] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo
Wang, Minjie Wang, and Haibo Chen. 2020. XIndex: a scalable learned
index for multicore data storage. In Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(San Diego, California) (PPoPP ’20). Association for Computing Ma-
chinery, New York, NY, USA, 308–320.

[55] Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. 2022.
Three types of incremental learning. Nature Machine Intelligence 4, 12
(2022), 1185–1197.

[56] QingWang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A Black-Box
Approach to NUMA-Aware Persistent Memory Indexes. In Proceed-
ings of the 15th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’21). 93–111.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://docs.nvidia.com/doca/archive/2-6-0/doca+comm+channel/index.html
https://docs.nvidia.com/doca/archive/2-6-0/doca+comm+channel/index.html
https://docs.nvidia.com/doca/archive/doca-v2-6-0/index.html
https://docs.nvidia.com/doca/archive/doca-v2-6-0/index.html
https://redis.io/

DALdex: A DPU-Accelerated Persistent Learned Index via Incremental Learning ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[57] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based
ordered key-value store using remote learned cache. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’20). USENIX Association, USA, 117–135.

[58] XingdaWei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen.
2023. Characterizing Off-path SmartNIC for Accelerating Distributed
Systems. In Proceedings of the 17th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’23). 987–1004.

[59] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P
Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson.
2010. Phase change memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[60] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric
Lo, and Tianzheng Wang. 2022. Are updatable learned indexes ready?
Proc. VLDB Endow. 15, 11 (July 2022), 3004–3017.

[61] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and
Chunxiao Xing. 2021. Updatable learned index with precise positions.
Proc. VLDB Endow. 14, 8 (April 2021), 1276–1288.

[62] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall:
implications of the obvious. SIGARCH Comput. Archit. News 23, 1
(March 1995), 20–24.

[63] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang.
2022. Characterizing the performance of intel optane persistent mem-
ory: a close look at its on-DIMM buffering. In Proceedings of the Sev-
enteenth European Conference on Computer Systems (Rennes, France)
(EuroSys ’22). Association for Computing Machinery, New York, NY,
USA, 488–505.

[64] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. 2020. An empirical guide to the behavior and use of
scalable persistent memory. In Proceedings of the 18th USENIX Confer-
ence on File and Storage Technologies (Santa Clara, CA, USA) (FAST’20).
USENIX Association, USA, 169–182.

[65] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: reducing consistency cost
for NVM-based single level systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (Santa Clara, CA) (FAST’15).
USENIX Association, USA, 167–181.

[66] Jifei Yi, Mingkai Dong, Fangnuo Wu, and Haibo Chen. 2022. HTMFS:
Strong Consistency Comes for Free with Hardware Transactional
Memory in PersistentMemory File Systems. In 20th USENIX Conference
on File and Storage Technologies (FAST ’22). 17–34.

[67] Sungmin Yun, Hwayong Nam, Kwanhee Kyung, Jaehyun Park,
Byeongho Kim, Yongsuk Kwon, Eojin Lee, and Jung Ho Ahn. 2024.
CLAY: CXL-based Scalable NDP Architecture Accelerating Embedding
Layers. In Proceedings of the 38th ACM International Conference on
Supercomputing (Kyoto, Japan) (ICS ’24). Association for Computing
Machinery, New York, NY, USA, 338–351.

[68] Jianping Zeng, Shao-Yu Huang, Jiuyang Liu, and Changhee Jung. 2024.
Soft Error Resilience at Near-Zero Cost. In Proceedings of the 38th ACM
International Conference on Supercomputing (Kyoto, Japan) (ICS ’24).
Association for Computing Machinery, New York, NY, USA, 176–187.

[69] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang. 2022.
NBTree: a lock-free PM-friendly persistent B+-tree for eADR-enabled
PM systems. Proc. VLDB Endow. 15, 6 (Feb. 2022), 1187–1200.

[70] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kamin-
sky, Lin Ma, and Rui Shen. 2016. Reducing the Storage Overhead
of Main-Memory OLTP Databases with Hybrid Indexes. In Proceed-
ings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing
Machinery, New York, NY, USA, 1567–1581.

[71] Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie,
Shouhong Wan, Yun Luo, Xufei Wu, Peng Zou, Chunyang Zheng,
Guoan Wu, and Andy Rudoff. 2022. PLIN: a persistent learned index

for non-volatile memory with high performance and instant recovery.
Proc. VLDB Endow. 16, 2 (Oct. 2022), 243–255.

[72] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min,
and Sanidhya Kashyap. 2022. ODINFS: Scaling PM Performance with
Opportunistic Delegation. In Proceedings of the 16th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’22). 179–193.

[73] Da-Wei Zhou, Qi-WeiWang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan,
and Ziwei Liu. 2024. Class-Incremental Learning: A Survey. IEEE Trans.
Pattern Anal. Mach. Intell. 46, 12 (Dec. 2024), 9851–9873.

[74] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019.
DPTree: differential indexing for persistent memory. Proc. VLDB Endow.
13, 4 (Dec. 2019), 421–434.

	Abstract
	1 Introduction
	2 Background
	2.1 Learned Index
	2.2 Data Process Unit
	2.3 Non-Volatile Memory

	3 DALdex Design
	3.1 Overview
	3.2 DALdex Structure
	3.3 DPU-Offloaded Incremental Learning
	3.4 DPU-Extended Failover
	3.5 DPU-Assisted Instant Recovery

	4 Implementation
	4.1 Index Operations
	4.2 Bulk Load
	4.3 Concurrency

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Performance of Varying Access Patterns
	5.4 Effects of Each Design
	5.5 Memory Consumption
	5.6 Recovery Performance
	5.7 Real-World Applications

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

